[1]韩鹏飞 张芝良,陈成龙,陈韬予,等.机器人辅助椎弓根置钉治疗老年脊柱退行性疾病的Meta分析[J].中华老年骨科与康复电子杂志,2019,(01):39-47.[doi:10.3877/cma.j.issn.2096-0263.2019.01.008]
 Han Pengfei,Zhang Zhiliang,Chen Chenglong,et al.Robot-assisted placement of pedicle screws for treatment of spine degenerative diseases: A Meta-Analysis[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2019,(01):39-47.[doi:10.3877/cma.j.issn.2096-0263.2019.01.008]
点击复制

机器人辅助椎弓根置钉治疗老年脊柱退行性疾病的Meta分析()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2019年01期
页码:
39-47
栏目:
Meta分析
出版日期:
2019-02-05

文章信息/Info

Title:
Robot-assisted placement of pedicle screws for treatment of spine degenerative diseases: A Meta-Analysis
作者:
韩鹏飞12 张芝良2陈成龙2陈韬予2李晓东1李鹏翠2魏垒2吕智2卫小春2
046000 山西省长治市第二人民医院骨科1;030001 太原,山西医科大学第二医院骨与软组织损伤修复重点实验室2
Author(s):
Han Pengfei12 Zhang Zhiliang2 Chen Chenglong2 Chen Taoyu2 Li Xiaodong1 Li Pengcui2 Wei Lei2 Lyu Zhi2 Wei Xiaochun2
1Department of Orthopaedic Surgery, Second People’s Hospital of Changzhi City, Changzhi 046010, China; 2Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, TaiYuan 030001, China
关键词:
脊柱疾病 外科手术计算机辅助 椎弓根钉 机器人辅助
Keywords:
Spinal diseases Surgery computer-assisted Pedicle screws Robot-assisted
DOI:
10.3877/cma.j.issn.2096-0263.2019.01.008
文献标志码:
A
摘要:
目的 通过Meta分析比较机器人辅助与透视引导椎弓根置钉在治疗老年脊柱退行性疾病时的准确性及安全性差异。方法 检索2008年04月至2018年04月国内外已发表的临床对照研究。所检索的数据库包括Embase、Pubmed、中国知网、维普、万方等数据库。依据检索策略,共检索到相关文献377篇,并最终纳入10篇外文文献,1篇中文文献。提取数据后,采用Review Manager 5.3软件进行数据分析。结果 椎弓根置钉治疗老年脊柱退行性疾病时,机器人辅助组的置钉准确度优于透视引导组(95% CI:1.38~2.43, P<0.001),机器人辅助组的不良事件发生率(95% CI:0.22~0.90,P=0.02)及翻修率(95% CI:0.17~0.91,P=0.03)均少于透视引导组,而透视引导组术中辐射强度要少于机器人辅助组(95% CI:0.09~0.89, P=0.02),余结局指标两组差异均无统计学意义。结论 在治疗老年脊柱退行性疾病时,机器人辅助椎弓根螺钉置入较传统透视引导置入具有更高的置钉准确度、更低的不良事件发生率。虽然术中辐射强度略高于透视引导组,但是机器人辅助技术仍不失为是一种安全可靠的治疗选择。
Abstract:
Objective To compare the accuracy and security between robot-assisted and fluoroscopy-guided pedicle screw placement s in the treatment of spine degenerative disease. Methods This study included clinical trials published both at demestic and abroad from April 2008 to April 2018. The retrieval was performed inonline databases include Embase, Pubmed, CNKI, CQVIP, Wanfang Data, etc. Based on the search strategy, a total of 377 related literatures were retrieved and 10 foreign documents and 1 Chinese document were included. After data extraction, statistical software Review manager 5.3 was used for data-analysis. Results It was found that when the pedicle screws were used to treat elderly patients with degenerative diseases of the spine, the accuracy of placement of the robot-assisted group was superior to that of the fluoroscopy-guided group (95% CI: 1.38-2.43, P<0.001). The robot-assisted number of adverse events (95% CI: 0.22-0.90, P=0.02) and revisions (95% CI: 0.17-0.91, P=0.03) were less than the fluoroscopy guidance group. But fluoroscopy exposure was more than the robot-assisted group (95% CI: 0.09-0.89, P=0.02). Other differences between the two groups were not statistically significant. Conclusions In the treatment of elderly degenerative diseases of the spine, robot-assisted pedicle screw implantation has higher accuracy and fewer complications than conventional fluoroscopy guided. Although intraoperative fluoroscopy exposure is slightly higher the fluoroscopy-guided group, robot-assisted technology is still a safe and reliable treatment option.

参考文献/References:

1 黄伟敏, 于秀淳, 梁进, 等. PEEK棒椎弓根螺钉系统治疗老年腰椎退行性疾病的疗效分析 [J]. 中华老年骨科与康复电子杂志, 2016, 2(4): 211-216.
2 Shchedrenok VV, Sebelev KI, Anikeev NV, et al. Algorithm of the diagnostics of trauma and degenerative diseases of the spine [J]. Vestn Khir Im I I Grek, 2011, 170(4): 102-104.
3 Epstein NE. Lower complication and reoperation rates for laminectomy rather than MI TLIF/other fusions for degenerative lumbar disease/spondylolisthesis: A review [J]. Surg Neurol Int, 2018, 9: 55.
4 Xiong Y, Xu L, Yu X, et al. Comparison of 6-year Follow-up Result of Hybrid Surgery and Anterior Cervical Discectomy and Fusion for the Treatment of Contiguous 2-segment Cervical Degenerative Disc Diseases [J]. Spine (Phila Pa 1976), 2018: [Epub ahead of print].
5 Wang H, Lv B. Comparison of clinical and radiographic results between posterior Pedicle-Based dynamic stabilization and posterior lumbar intervertebral fusion for lumbar degenerative disease: a 2-Year retrospective study [J]. World Neurosurg, 2018, 114: e403-e411.
6 Wang MY, Pineiro G, Mummaneni PV. Stimulus-evoked electromyography testing of percutaneous pedicle screws for the detection of pedicle breaches: a clinical study of 409 screws in 93 patients [J]. J Neurosurg Spine, 2010, 13(5): 600-605.
7 Avila MJ, Baaj AA. Freehand thoracic pedicle screw placement: review of existing strategies and a Step-by-Step guide using uniform landmarks for all levels [J]. Cureus, 2016, 8(2): 501.
8 Joseph JR, Smith BW, Liu X, et al. Current applications of robotics in spine surgery: a systematic review of the literature [J]. Neurosurg Focus, 2017, 42(5): 2.
9 Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial [J]. Spine (Phila Pa 1976), 2017, 42(6): 353-358.
10 Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement [J]. Eur Spine J, 2011, 20(6): 860-868.
11 Keric N, Eum DJ, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis [J]. J Robot Surg, 2017, 11(1): 17-25.
12 Kim HJ, Lee SH, Chang BS, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test [J]. Spine (Phila Pa 1976), 2015, 40(2): 87-94.
13 Kim HJ, Jung WI, Chang BS, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery [J]. Int J Med Robot, 2017, 13(3): Epub 2016 Sep 27.
14 Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-Arm, robotic guidance, or freehand technique: a comparative study [J]. Spine (Phila Pa 1976), 2018, 43(6): E373-E378.
15 Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis [J]. Eur Spine J, 2016, 25(3): 947-955.
16 Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation [J]. Spine (Phila Pa 1976), 2012, 37(8): E496-E501.
17 Schizas C, Thein E, Kwiatkowski B, et al. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy [J]. Acta Orthop Belg, 2012, 78(2): 240-245.
18 Solomiichuk V, Fleischhammer J, Molliqaj G, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison [J]. Neurosurg Focus, 2017, 42(5): 13.
19 付松, 邵诗泽, 王龙强, 等. Quadrant系统下椎间融合辅助机器人治疗老年单节段腰椎退变的临床研究 [J]. 中华老年骨科与康复电子杂志, 2017, 3(2): 70-76.
20 Purvis TE, Neuman BJ, Riley LH et al. Discriminant Ability, Concurrent Validity, and ResPonsiveness of PROMIS Health Domains Among Patients With Lumbar Degenerative Disease Undergoing DecomPression With or Without Arthrodesis [J]. SPine (Phila Pa 1976). 2018, [Epub ahead of print].
21 Lee YC, Zotti MG, Osti OL. Operative management of lumbar degenerative disc disease [J]. Asian Spine J, 2016, 10(4): 801-819.
22 Ghobrial GM, Williams KA, Arnold P, et al. Iatrogenic neurologic deficit after lumbar spine surgery: A review [J]. Clin Neurol Neurosurg, 2015, 139: 76-80.
23 O’lynnger TM, Zuckerman SL, Morone PJ, et al. Trends for spine surgery for the elderly: implications for access to healthcare in North America [J]. Neurosurgery, 2015, 77(Suppl 4): S136-S141.
24 Salzmann SN, Shue J, Hughes AP. Lateral lumbar interbody Fusion-Outcomes and complications [J]. Curr Rev Musculoskelet Med, 2017, 10(4): 539-546.
25 Lattig F, Weckbach S. S2-Ala-iliac screws for extended pelvic fixation in longer lumbar instrumentations : Description of a freehand technique [J]. Oper Orthop Traumatol, 2017, 29(4): 360-372.
26 Palejwala SK, Sheen WA, Walter CM, et al. Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: Review of the literature and report of three cases [J]. Clin Neurol Neurosurg, 2014, 124: 90-105.
27 Perna F, Borghi R, Pilla F, et al. Pedicle screw insertion techniques: an update and review of the literature [J]. Musculoskelet Surg, 2016, 100(3): 165-169.
28 Park SM, Kim HJ, Lee SY, et al. Radiographic and clinical outcomes of Robot-Assisted posterior pedicle screw fixation: Two-Year results from a randomized controlled trial [J]. Yonsei Med J, 2018, 59(3): 438-444.
29 付松, 邵诗泽, 王龙强, 等. 机器人经皮置钉Quadrant通道下减压, 椎间融合治疗腰椎滑脱症 [J]. 脊柱外科杂志, 2017, 15(1): 7-12.
30 王洪伟, 张鹤, 李长青, 等. 术前计划在脊柱微创手术机器人椎弓根螺钉置入操作中的价值探讨 [J]. 中国矫形外科杂志, 2013, 21(03): 275-279.

相似文献/References:

[1]贾建波,禹宝庆,吴良浩,等.传统后路与微创 SuperPath入路的半髋置换治疗老年股骨颈骨折疗效比较[J].中华老年骨科与康复电子杂志,2017,(04):223.[doi:10.3877/cma.j.issn.2096-0263.2017.04.006]
 Jia Jianbo,Yu Baoqing,Wu Lianghao,et al.Hip hemiarthroplasty for senile femoral neck fractures: minimally invasive SuperPath approach versus traditional posterior approach[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(01):223.[doi:10.3877/cma.j.issn.2096-0263.2017.04.006]
[2]张超,王国文,韩秀鑫,等.肿瘤型假体置换治疗老年股骨上段转移瘤的疗效分析[J].中华老年骨科与康复电子杂志,2017,(06):332.[doi:10.3877/cma.j.issn.2096-0263.2017.06.003]
 Zhang Chao,Wang Guowen,Han Xiuxin,et al.The analysis of the surgical of tumor prosthetic replacement effect on treating elder patients with proximal femur metastasis[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(01):332.[doi:10.3877/cma.j.issn.2096-0263.2017.06.003]
[3]陆惠根,黄鑫,张中伟,等.肺癌脊柱转移瘤的手术疗效分析[J].中华老年骨科与康复电子杂志,2018,(01):14.[doi:10.3877/cma.j.issn.2096-0263.2018.01.004]
 Lu Huigen,Huang Xin,Zhang Zhongwei,et al.The curative effect of surgical treatment for spinal metastases of lung cancer[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(01):14.[doi:10.3877/cma.j.issn.2096-0263.2018.01.004]
[4]迪力夏提·多力坤,郑龙坡.顺势复位治疗胫骨平台骨折的临床研究[J].中华老年骨科与康复电子杂志,2018,(03):163.[doi:10.3877/cma.j.issn.2096-0263.2018.03.008]
 Dilixiati Duolikun,Zheng Longpo.Clinical study of homeopathic bidirection-traction reduction device for tibial plateau fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(01):163.[doi:10.3877/cma.j.issn.2096-0263.2018.03.008]
[5]丛锐军,仇荣敏,刘俊峰,等.顺势牵引复位技术治疗股骨干骨折的前瞻性随机对照临床试验[J].中华老年骨科与康复电子杂志,2018,(04):193.[doi:10.3877/cma.j.issn.2096-0263.2018.04.001]
 Cong Ruijun,Qiu Rongmin,Liu Junfeng,et al.Prospective randomized trial of homeopathic traction reduction technique for femoral shaft fracture[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(01):193.[doi:10.3877/cma.j.issn.2096-0263.2018.04.001]
[6]亢世杰 胡义明 鲍飞龙 黄东生 江涛 刘涛. 双反牵引、微创复位及raft技术治疗后内及后外侧胫骨平台骨折[J].中华老年骨科与康复电子杂志,2018,(05):261.
 Kang Shijie,Hu Yiming,Bao Feilong,et al.Posteromedial and posterolateral tibial plateau fractures after homeopathic double reverse traction, minimally invasive reduction and raft technique[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(01):261.
[7]李伟,楼宇梁,全仁夫.脊柱后路PSO截骨长节段固定治疗 Kummells病伴脊柱后凸的临床疗效[J].中华老年骨科与康复电子杂志,2019,(01):33.[doi:10.3877/cma.j.issn.2096-0263.2019.01.007]
 Li Wei,Lou Yuliang,Quan Renfu.The treatment evaluation for osteoporotic Kummell disease with kyphosis by posterior spine osteotomy long segment fixation[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2019,(01):33.[doi:10.3877/cma.j.issn.2096-0263.2019.01.007]
[8]梁智林 臧传义 杨波 唐杰 赵小林 佟训哲 高茂龙.老年腰椎间盘突出症患者手术疗效的影响因素及对策[J].中华老年骨科与康复电子杂志,2019,(03):130.[doi:10.3877/cma.j.issn.2096-0263.2019.002]
 Liang Zhilin,Zang Chuanyi,Yang Bo,et al. Affecting factors and strategies of surgical treatment for elder people with lumbar disc herniation[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2019,(01):130.[doi:10.3877/cma.j.issn.2096-0263.2019.002]

备注/Memo

备注/Memo:
基金项目:国家国际科技合作专项(2015DFA33050);国家自然科学基金青年基金(81601949)
更新日期/Last Update: 2019-02-25