[1]邵明昊 吕飞舟 马晓生 夏新雷 王洪立 郑超君 张帆 姜建元.腰椎皮质骨钉道螺钉在骨质疏松症患者中 应用的三维有限元分析[J].中华老年骨科与康复电子杂志,2015,(02):1-6.[doi:10.3877/cma.j.issn.2096-0263.2015.02.001]
 Shao Minghao,Lyu Feizhou,Ma Xiaosheng,et al.Biomechanical evaluation of lumbar pedicle screws using cortical bone trajectory in osteoporosis : a finite element study[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2015,(02):1-6.[doi:10.3877/cma.j.issn.2096-0263.2015.02.001]
点击复制

腰椎皮质骨钉道螺钉在骨质疏松症患者中 应用的三维有限元分析()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2015年02期
页码:
1-6
栏目:
骨与创伤
出版日期:
2015-11-05

文章信息/Info

Title:
Biomechanical evaluation of lumbar pedicle screws using cortical bone trajectory in osteoporosis : a finite element study
作者:
邵明昊 吕飞舟 马晓生 夏新雷 王洪立 郑超君 张帆 姜建元
复旦大学附属华山医院骨科
Author(s):
Shao Minghao Lyu Feizhou Ma Xiaosheng Xia Xinlei Wang Hongli Zheng Chaojun Zhang Fan Jiang Jianyuan
Department of Orthopaedic, Huashan Hospital, Fudan University
关键词:
腰椎 内固定器 有限元分析 骨质疏松症
Keywords:
Lumbar vertebrae  Internal fixators  Finite element analysis  Osteoporosis
DOI:
10.3877/cma.j.issn.2096-0263.2015.02.001
摘要:
目的 比较椎弓根皮质骨钉道(cortical bone trajectory,CBT)螺钉和传统椎弓根 钉道(traditional trajectory,TT)螺钉抗拔出力、螺钉及椎体稳定性的差异。方法 回顾性选取复 旦大学附属华山医院2015 年3 月至9 月骨质疏松症患者7 例,年龄57 ~ 63 岁,平均(61.4±3.1) 岁,均为女性,骨密度T 值均< -2.5 SD。使用Mimics 和Abaqus 6.9 建立L4 椎体模型,选用TT 螺钉 (直径为6.5 mm、长度为45 mm)和CBT 螺钉(直径为5.0 mm、长度为35 mm)模拟置钉,分析 并比较两种螺钉的轴向抗拔出力、上下左右载荷情况下螺钉载荷位移比及前屈后伸、轴向及侧屈 旋转工况下椎体载荷位移比情况。结果 CBT 螺钉组的抗拔出力[(1 013.2±279.1)N] 较TT 螺钉 组[(1 277.1±331.3)N] 高出26.04%(t=3.128,P=0.024)。CBT 螺钉组在受到上下左右应力时载 荷位移比明显大于TT 螺钉组(t=3.217,P=0.021;t=3.216,P=0.021;t=3.214,P=0.017;t=3.221, P=0.016)。CBT 螺钉组椎体前屈、后伸载荷位移比明显大于TT 螺钉组(t=2.733,P=0.034; t=2.712,P=0.031);而TT 螺钉组椎体轴向、侧屈旋转载荷位移比较CBT 螺钉组高(t=3.941, P=0.011;t=4.432,P=0.007)。结论 相比TT 螺钉,CBT 螺钉具有更强的抗拔出力及螺钉稳定性, 且椎体前屈、后伸的稳定性强于TT 螺钉固定。CBT 螺钉内固定为骨质疏松患者的腰椎手术提供了 更多的选择。
Abstract:
 Objective The purpose of the present study was to evaluate the differences of pull-out strength and stability of screw and vertebrae between two models using cortical bone trajectory (CBT) screw and traditional trajectory (TT) screw and provide theoretical basis for the clinical application of CBT screw. Methods Finite element models of L4 vertebrae were builded using Mimics and Abaqus 6.9, according to 7 osteoporotic patients, ranging in age from 57 to 63 years, at average age of (61.4±3.1) years, admitted to Huashan Hospital of Fudan University from March to September 2015. All of these patients were female with T value of bone mineral density less than -2.5 SD. Pedicle screws were placed using TT screw (6.5 mm diameter, length of 45 mm) or CBT screw (diameter of 5.0 mm, length of 35 mm). Carefully compare the two models in terms of the axial pull-out strength, the screw stability and the vertebral construct stability. Results The pull-out strength of CBT screw group (1 277.1±331.3) Nwas 26.04% higher compared with that of the TT screw group [(1 013.2±279.1) N, (t=3.128, P=0.024)]. The load stress-displacement ratio of CBT screw group is significantly higher than that of TT screw group (P<0.05). The CBT construct had superior resistance to flexion and extension loading and inferior resistance to lateral bending and axial rotation (P<0.05). The load-displacement ratio of axial direction, lateral bending, and rotation in TT screw group were higher compared to CBT screw group (P<0.05). Conclusion The three-dimensional finite element can effectively simulate lumbar structure of patients with osteoporosis. CBT screw group is demonstrated to have superior fixation strength for each individual screw and sufficient stiffness in flexion and extension within a construct. Compared with TT screw, CBT screw may be more beneficial for osteoporotic patients.

参考文献/References:

1 Mclain RF, Fry MF, Moseley TA, et al. Lumbar pedicle screw salvage: pullout testing of three different pedicle screw designs [J]. J Spinal Disord, 1995, 8(1): 62-68. 2 Chiba M, Mclain RF, Yerby SA, et al. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation [J]. Spine(Phila Pa 1976), 1996, 21(3): 288-294. 3 Dubousset J. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report [J]. J Bone Joint Surg Am, 1995, 77(4): 648-649. 4 Davne SH, Myers DL. Complications of lumbar spinal fusion with transpedicular instrumentation [J]. Spine, 1992, 17(6): S184-S189. 5 Terman SW, Yee TJ, Lau D, et al. Minimally invasive versus open transforaminal lumbar interbody fusion: comparison of clinical outcomes among obese patients [J]. J Neurosurg Spine, 2014, 20(6): 644-652. 6 Shea TM, Laun J, Gonzalez-Blohm SA, et al. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status [J]. Biomed Res Int, 2014: 748393. 7 Renner SM, Lim TH, Kim WJ, et al. Augmentation of pedicle screw fixation strength using an injectable Calcium phosphate cement as a function of injection timing and method [J]. Spine (Phila Pa 1976), 2004, 29(11): E212-E216. 8 Santoni BG, Hynes RA, Mcgilvray KC, et al. Cortical bone trajectory for lumbar pedicle screws [J]. Spine J, 2009, 9(5): 366-373. 9 Perez-Orribo L, Kalb S, Reyes PM, et al. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support [J]. Spine (Phila Pa 1976), 2013, 38(8): 635- 641. 10 Baluch DA, Patel AA, Lullo B, et al. Effect of physiologic loads on cortical and traditional pedicle screw fixation [J]. Spine (Phila Pa 1976), 2014, 39(22):1297-1302 . 11 Matsukawa K, Yato Y, Kato T, et al. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique [J]. Spine (Phila Pa 1976), 2014, 39(4): E240-E245. 12 Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone [J]. Med Eng Phys, 1995, 17(5): 347-355. 13 Matsukawa K, Yato Y, Nemoto O, et al. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography [J]. J Spinal Disord Tech, 2013, 26(6): E248-E253. 14 Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation [J]. J Bone Joint Surg Br, 2010, 92(8): 1061-1065. 15 Ryan PJ, Blake GM,Herd R,et al. Distribution of bone mineral density in the lumbar spine in health and ostcoporcsis [J]. Osteoporos Int, 1994, 4(2):67-71 . 16 Braillon PM, Lapillonne A, Ho PS, et al. Assessnent of the bone mineral density in the lumbar vertebrae of newborns [J]. Skeletal Radiol, 1996 , 25(8):711-715. 17 Wittenberg RH, Shea M, Swartz DE, et al. Importance of bone mineral density in instrumented spine fusions [J]. Spine (Phila Pa 1976), 1991, 16(6): 647-652. 18 Chao CK, Hsu CC, Wang JL, et al. Increasing bending strength and pullout strength in conical pedicle screws:biomechanical tests and finite element analyses [J]. J Spinal Disord Tech, 2008, 21(2): 130- 138. 19 Sterba W, Kim DG, Fyhrie DP, et al. Biomechanical analysis of differing pedicle screw insertion angles [J]. Clin Biomech (Bristol, Avon), 2007, 22(4): 385-391. 20 Di Silvestre M, Parisini P, Lolli FA. Complications of thoracic pedicle screws in scoliosis treatment [J]. Spine (Phila Pa 1976), 2007, 32(15): 1655-1661. 21 Zdeblick TA, Kunz DN, Cooke ME, et al. Pedicle screw pullout strength. Correlation with insertional torque [J]. Spine (Phila Pa 1976) 1993, 18: 1673-1676. 22 Zander T, Rohlmann A, Kl?ckner C, et al. Influence of graded facetectomy and laminectomy on spinal biomechanics [J]. Eur Spine J, 2003, 12(4): 427-434.

相似文献/References:

[1]沈鹏程 朱立帆 蒋富贵 鞠文 徐能 李晓林.锁定钢板结合重建肱骨内侧柱治疗老年不稳定型肱骨近端骨折的疗效分析[J].中华老年骨科与康复电子杂志,2015,(02):7.[doi:10.3877/cma.j.issn.2096-0263.2015.02.002]
 Shen Pengcheng,Zhu Lifan,Jiang Fugui,et al.Clinical research of locking plate combined with medial column mechanical support for unstable fractures of the proximal humerus in elderly patients[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2015,(02):7.[doi:10.3877/cma.j.issn.2096-0263.2015.02.002]
[2]王玉,岳斌,张国庆,等.退行性腰椎滑脱稳定性与手术复位率的相关性分析[J].中华老年骨科与康复电子杂志,2016,(04):198.[doi:10.3877/cma.j.issn.2096-0263.2016.04.002]
 Wang Yu,Yue Bin,Zhang Guoqing,et al.Correlation analysis between stability of the degenerative lumbar spondylolisthesis and the reduction rate in aged patients[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2016,(02):198.[doi:10.3877/cma.j.issn.2096-0263.2016.04.002]
[3]李华,杨维杰,田建平,等.单侧与双侧椎弓根螺钉固定结合 TLIF治疗老年退行性腰椎疾患的临床研究[J].中华老年骨科与康复电子杂志,2016,(04):205.[doi:10.3877/cma.j.issn.2096-0263.2016.04.003]
 Li Hua,Yang Weijie,Tian Jianping,et al.Clinical efficiency of unilateral vs bilateral pedicle screws system combined with TLIF for lumbar degenerative disease in elderly patients[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2016,(02):205.[doi:10.3877/cma.j.issn.2096-0263.2016.04.003]
[4]侯建伟,谢仁国,李玉前,等.加长型 PFNA-Ⅱ和DHS治疗老年骨质疏松性股骨转子下骨折的疗效分析[J].中华老年骨科与康复电子杂志,2017,(01):22.[doi:10.3877/cma.j.issn.2096-0263.2017.01.005]
 Hou Jianwei,Xie Renguo,Li Yuqian,et al.Clinical effective analysis of lengthened PFNA- II fixation and dynamic hip screw for senile osteoporotic subtrochanteric fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(02):22.[doi:10.3877/cma.j.issn.2096-0263.2017.01.005]
[5]马永刚,王伟,王坤正.接骨板内固定与手法复位石膏外固定治疗老年桡骨远端关节内骨折的疗效比较[J].中华老年骨科与康复电子杂志,2017,(02):65.[doi:10.3877/cma.j.issn.2096-0263.2017.02.001]
 MaYonggang,Wang Wei,Wang Kunzheng.Comparison of efficacy between plate fixation with manual reduction and plaster external fixation in elderly intra-articular distal radial fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(02):65.[doi:10.3877/cma.j.issn.2096-0263.2017.02.001]
[6]宫福良,田康,李杰.髓内外内固定治疗老年人股骨粗隆间骨折的疗效比较[J].中华老年骨科与康复电子杂志,2017,(06):356.[doi:10.3877/cma.j.issn.2096-0263.2017.06.008]
 Gong Fuliang,Tian Kang,Li Jie..Comparative study of different internal fixation methods for the treatment of senile intertrochanteric fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(02):356.[doi:10.3877/cma.j.issn.2096-0263.2017.06.008]
[7]李祖涛,缪晓刚,周文正,等.钢板系统治疗髓内固定失败的股骨无菌性骨不连疗效观察[J].中华老年骨科与康复电子杂志,2018,(04):198.[doi:10.3877/cma.j.issn.2096-0263.2018.04.002]
 Li Zutao,Miao Xiaogang,Zhou Wenzheng,et al.Treatment of femur aseptic non-unions after intramedullary nailing interfixation with locking plate[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(02):198.[doi:10.3877/cma.j.issn.2096-0263.2018.04.002]
[8]方源 丁昌荣 王英振 张海宁. 多孔涂层钽金属棒系统治疗早期非创伤性股骨头坏死的临床对比研究[J].中华老年骨科与康复电子杂志,2018,(05):271.
 Fang Yuan,Ding Changrong,Wang Yingzhen,et al.Clinical comparative study of porous coated tantalum rod system in the early nontraumatic osteonecrosis of the femoral head[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(02):271.
[9]周孝聪,赵学凌,雷宇,等.胸腰椎后路内固定术后深部感染的研究进展[J].中华老年骨科与康复电子杂志,2019,(01):54.[doi:10.3877/cma.j.issn.2096-0263.2019.01.010]
 Zhou Xiaocong,Zhao Xueling,Lei Yu,et al.Progress of postoperative infection after lumbar posterior surgery[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2019,(02):54.[doi:10.3877/cma.j.issn.2096-0263.2019.01.010]
[10]陈宏亮,郭开今,段钢,等.单侧椎弓根旁入路PKP治疗腰椎OVCF的临床疗效观察[J].中华老年骨科与康复电子杂志,2021,(03):140.[doi:10.3877/cma.j.issn.2096-0263.2021.03.003]
 Chen Hongliang,Guo Kaijin,Duan Gang,et al.Clinical observation of unilateral-beside approach PKP in treatment of lumbar OVCF[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2021,(02):140.[doi:10.3877/cma.j.issn.2096-0263.2021.03.003]
[11]黄伟敏,于秀淳,梁进,等.PEEK棒椎弓根螺钉系统治疗老年腰椎退行性疾病的疗效分析[J].中华老年骨科与康复电子杂志,2016,(04):211.[doi:10.3877/cma.j.issn.2096-0263.2016.04.004]
 Huang Weimin,Yu Xiuchun,et al.Clinical outcome of PEEK rod pedicle screw system for senile lumbar degenerative disease[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2016,(02):211.[doi:10.3877/cma.j.issn.2096-0263.2016.04.004]

更新日期/Last Update: 2015-12-30