参考文献/References:
1 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer, 1972, 26(4): 239-257.
2 Guo KJ, Zhao FC, Guo Y, et al. The influence of age, gender and treatment with steroids on the incidence of osteonecrosis of the femoral head during the management of severe acute respiratory syndrome: a retrospective study [J]. Bone Joint J, 2014, 96-B(2): 259-262.
3 Laporte DM, Mont MA, Mohan V, et al. Multifocal osteonecrosis [J]. J Rheumatol, 1998, 25(10): 1968-1974.
4 Chernetsky SG, Mont MA, Laporte DM, et al. Pathologic features in steroid and nonsteroid associated osteonecrosis [J]. Clin Orthop Relat Res, 1999, 11(368): 149-161.
5 Youm YS, Lee SY, Lee SH. Apoptosis in the osteonecrosis of the femoral head [J]. Clin Orthop Surg, 2010, 2(4): 250-255.
6 Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action [J]. J Steroid Biochem Mol Biol, 2009, 114(3/5): 121-128.
7 Wu X, Feng X, He Y, et al. IL-4 administration exerts preventive effects via suppression of underlying inflammation and TNF-α-induced apoptosis in steroid-induced osteonecrosis [J]. Osteoporos Int, 2016, 11: (Epub ahead of print).
8 Wu X, Yang S, Wang H, et al. G-CSF/SCF exert beneficial effects via anti-apoptosis in rabbits with steroid-associated osteonecrosis [J]. Exp Mol Pathol, 2013, 94(1): 247-254.
9 Zheng H, Yang E, Peng H, et al. Gastrodin prevents steroid-induced osteonecrosis of the femoral head in rats by anti-apoptosis [J]. Chin Med J, 2014, 127(22): 3926-3931.
10 Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone [J]. J Clin Invest, 1998, 102(2): 274-282.
11 Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids [J]. J Clin Invest, 2002, 109(8): 1041-1048.
12 Bejar J, Peled E, Boss JH. Vasculature deprivation--induced osteonecrosis of the rat femoral head as a model for therapeutic trials [J]. Theor Biol Med Model, 2005, 2(2): 24.
13 Calder JD, Buttery L, Revell PA, et al. Apoptosis--a significant cause of bone cell death in osteonecrosis of the femoral head [J]. J Bone Joint Surg Br, 2004, 86(8): 1209-1213.
14 Jilka RL, Weinstein RS, Bellido T, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone [J]. J Clin Invest, 1999, 104(4): 439-446.
15 Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin [J]. J Clin Invest, 1999, 104(10): 1363-1374.
16 Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels [J]. J Biol Chem, 2002, 277(10): 8648-8657.
17 Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity [J]. Cell, 2001, 104(5): 719-730.
18 Chen HL, Demiralp B, Schneider A, et al. Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells [J]. J Biol Chem, 2002, 277(22): 19374-19381.
19 Ahuja SS, Zhao S, Bellido T, et al. CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4 [J]. Endocrinology, 2003, 144(5): 1761-1769.
20 Gohel A, Mccarthy MB, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro [J]. Endocrinology, 1999, 140(11): 5339-5347.
21 Kim HJ, Zhao H, Kitaura H, et al. Glucocorticoids suppress bone formation via the osteoclast [J]. J Clin Invest, 2006, 116(8): 2152-2160.
22 O’brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength [J]. Endocrinology, 2004, 145(4): 1835-1841.
23 Kabata T, Kubo T, Matsumoto T, et al. Apoptotic cell death in steroid induced osteonecrosis: an experimental study in rabbits [J]. J Rheumatol, 2000, 27(9): 2166-2171.
24 Eberhardt AW, Yeager-Jones A, Blair HC. Regional trabecular bone matrix degeneration and osteocyte death in femora of glucocorticoid- treated rabbits [J]. Endocrinology, 2001, 142(3): 1333-1340.
25 Mollazadeh S, Fazly Bazzaz BS, Kerachian MA. Role of apoptosis in pathogenesis and treatment of bone-related diseases [J]. J Orthop Surg Res, 2015, 10: 15.
26 Zhang C, Zou YL, Ma J, et al. Apoptosis associated with Wnt/β-catenin pathway leads to steroid-induced avascular necrosis of femoral head [J]. BMC Musculoskelet Disord, 2015, 16: 132.
27 Weinstein RS. Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity [J]. Bone, 2010, 46(3): 564-570.
28 Kim HJ. New understanding of glucocorticoid action in bone cells [J]. BMB Rep, 2010, 43(8): 524-529.
29 Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death [J]. Annu Rev Immunol, 1998, 16: 395-419.
30 Bai R, Liu W, Zhao A, et al. Nitric oxide content and apoptosis rate in steroid-induced avascular necrosis of the femoral head [J]. Exp Ther Med, 2015, 10(2): 591-597.
31 Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis [J]. Trends Cell Biol, 1998, 8(8): 324-330.
32 Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis [J]. Cell, 1993, 75(2): 241-251.
33 Krajewski S, Tanaka S, Takayama S, et al. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes [J]. Cancer Res, 1993, 53(19): 4701-4714.
34 Li Y, Chopp M, Zhang ZG, et al. p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats [J]. Stroke, 1994, 25(4): 849-855; discussion 855-6.
35 Dufour C, Holy X, Marie PJ. Skeletal unloading induces osteoblast apoptosis and targets alpha5beta1-PI3K-Bcl-2 signaling in rat bone [J]. Exp Cell Res, 2007, 313(2): 394-403.
36 Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? [J]. Nat Cell Biol, 1999, 1(8): E209-E216.
37 Mocetti P, Silvestrini G, Ballanti P, et al. Bcl-2 and Bax expression in cartilage and bone cells after high-dose corticosterone treatment in rats [J]. Tissue Cell, 2001, 33(1): 1-7.
38 Silvestrini G, Ballanti P, Patacchioli FR, et al. Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone [J]. Bone, 2000, 26(1): 33-42.
39 Nagase S, Katabuchi H, Hiura M, et al. Evidence-based guidelines for treatment of uterine body neoplasm in Japan: Japan Society of Gynecologic Oncology (JSGO) 2009 edition [J]. Int J Clin Oncol, 2010, 15(6): 531-542.
40 Tsuji M, Ikeda H, Ishizu A, et al. Altered expression of apoptosis-related genes in osteocytes exposed to high-dose steroid hormones and hypoxic stress [J]. Pathobiology, 2006, 73(6): 304-309.
41 Zalavras C, Shah S, Birnbaum MJ, et al. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis [J]. Crit Rev Eukaryot Gene Expr, 2003, 13(2/4): 221-235.
42 Ookawa K, Tsuchida S, Adachi J, et al. Differentiation induced by RB expression and apoptosis induced by p53 expression in an osteosarcoma cell line [J]. Oncogene, 1997, 14(12): 1389-1396.
43 Li H, Qian W, Weng X, et al. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells [J]. PLoS One, 2012, 7(6): 37030.
44 Almeida M. Aging mechanisms in bone [J]. Bonekey Rep, 2012, 1: 102.
45 Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor [J]. J Exp Med, 1989, 169(5): 1747-1756.
46 Trauth BC, Klas C, Peters AM, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis [J]. Science, 1989, 245(4915): 301-305.
47 Wajant H. The Fas signaling pathway: more than a paradigm [J]. Science, 2002, 296(5573): 1635-1636.
48 Suda T, Takahashi T, Golstein P, et al. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family [J]. Cell, 1993, 75(6): 1169-1178.
49 Kovaci? N, Luki? IK, Grcevi? D, et al. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis [J]. J Immunol, 2007, 178(6): 3379-3389.
50 Schmidt M, Lügering N, Lügering A, et al. Role of the CD95/CD95 ligand system in glucocorticoid-induced monocyte apoptosis [J]. J Immunol, 2001, 166(2): 1344-1351.
51 Martin DA, Siegel RM, Zheng L, et al. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal [J]. J Biol Chem, 1998, 273(8): 4345-4349.
52 Micheau O, Solary E, Hammann A, et al. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs [J]. J Biol Chem, 1999, 274(12): 7987-7992.
53 Kawakami A, Eguchi K, Matsuoka N, et al. Fas and Fas ligand interaction is necessary for human osteoblast apoptosis [J]. J Bone Miner Res, 1997, 12(10): 1637-1646.
54 Hashimoto S, Setareh M, Ochs RL, et al. Fas/Fas ligand expression and induction of apoptosis in chondrocytes [J]. Arthritis Rheum, 1997, 40(10): 1749-1755.
55 Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function* [J]. Annu Rev Immunol, 2000, 18: 309-345.
56 Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation [J]. Science, 1998, 281(5381): 1305-1308.
57 Kogianni G, Mann V, Ebetino F, et al. Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis [J]. Life Sci, 2004, 75(24): 2879-2895.
58 Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature [J]. Cell, 1996, 87(2): 171.
59 Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer: mutations within caspase genes [J]. J Med Genet, 2009, 46(8): 497-510.
60 Zhang J, Mikecz K, Finnegan A, et al. Spontaneous thymocyte apoptosis is regulated by a mitochondrion-mediated signaling pathway [J]. J Immunol, 2000, 165(6): 2970-2974.
61 Savill J, Fadok V. Corpse clearance defines the meaning of cell death [J]. Nature, 2000, 407(685): 784-788.
62 Gao YS, Guo SC, Ding H, et al. Caspase-3 May be employed as an early predictor for fracture?induced osteonecrosis of the femoral head in a canine model [J]. Mol Med Rep, 2012, 6(3): 611-614.
63 Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo [J]. Cell, 1998, 94(3): 339-352.
64 Lee D, Long SA, Adams JL, et al. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality [J]. J Biol Chem, 2000, 275(21): 16007-16014.
65 Liu Y, Porta A, Peng X, et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k [J]. J Bone Miner Res, 2004, 19(3): 479-490.
66 Abdi A, Sadraie H, Dargahi L, et al. Apoptosis inhibition can be threatening in Aβ-induced neuroinflammation, through promoting cell proliferation [J]. Neurochem Res, 2011, 36(1): 39-48.
67 Xu X, Wen H, Hu Y, et al. STAT1-caspase 3 pathway in the apoptotic process associated with steroid-induced necrosis of the femoral head [J]. J Mol Histol, 2014, 45(4): 473-485.
68 Li JK, Cheng L, Zhao YP, et al. ADAMTS-7 exhibits elevated expression in cartilage of osteonecrosis of femoral head and has a positive correlation with TNF- α and NF- κ B P65 [J]. Mediators Inflamm, 2015: 196702.
69 Willis MS, Patterson C. Into the heart: the emerging role of the ubiquitin-proteasome system [J]. J Mol Cell Cardiol, 2006, 41(4): 567-579.
70 Aleshin AN, Sawa Y, Kitagawa-Sakakida S, et al. 150-kDa oxygen-regulated protein attenuates myocardial ischemia-reperfusion injury in rat heart [J]. J Mol Cell Cardiol, 2005, 38(3): 517-525.
71 Bando Y, Tsukamoto Y, Katayama T, et al. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death [J]. FASEB J, 2004, 18(12): 1401-1403.
72 Kitano H, Nishimura H, Tachibana H, et al. ORP150 ameliorates ischemia/reperfusion injury from middle cerebral artery occlusion in mouse brain [J]. Brain Res, 2004, 1015(1/2): 122-128.
73 Kitao Y, Hashimoto K, Matsuyama T, et al. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development [J]. J Neurosci, 2004, 24(6): 1486-1496.
74 Wang HQ, Du ZX, Zhang HY, et al. Different induction of GRP78 and CHOP as a predictor of sensitivity to proteasome inhibitors in thyroid cancer cells [J]. Endocrinology, 2007, 148(7): 3258-3270.
75 Maines MD. The heme oxygenase system: a regulator of second messenger gases [J]. Annu Rev Pharmacol Toxicol, 1997, 37: 517-554.
76 Chen S, Li J, Peng H, et al. Administration of erythropoietin exerts protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats [J]. Int J Mol Med, 2014, 33(4): 840-848.
77 Zou W, Yang S, Zhang T, et al. Hypoxia enhances glucocorticoid-induced apoptosis and cell cycle arrest via the PI3K/Akt signaling pathway in osteoblastic cells [J]. J Bone Miner Metab, 2015, 33(6): 615-624.
78 Sato M, Sugano N, Ohzono K, et al. Apoptosis and expression of stress protein (ORP150, HO1) during development of ischaemic osteonecrosis in the rat [J]. J Bone Joint Surg Br, 2001, 83(5): 751-759.
79 Mautes AE, Kim DH, Sharp FR, et al. Induction of heme oxygenase-1 (HO-1) in the contused spinal cord of the rat [J]. Brain Res, 1998, 795(1/2): 17-24.