[1]刘勃,陈忠斌,张立海,等.MicroRNA与细胞自噬调控[J].中华老年骨科与康复电子杂志,2018,(01):57-61.[doi:10.3877/cma.j.issn.2096-0263.2018.01.013]
 iu Bo,Chen Zhongbin,Zhang Lihai,et al.Micro-RNA and autophagy regulation[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(01):57-61.[doi:10.3877/cma.j.issn.2096-0263.2018.01.013]
点击复制

MicroRNA与细胞自噬调控()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2018年01期
页码:
57-61
栏目:
综述
出版日期:
2018-01-31

文章信息/Info

Title:
Micro-RNA and autophagy regulation
作者:
刘勃陈忠斌张立海唐佩福
100853 北京,解放军总医院骨科
Author(s):
iu Bo Chen Zhongbin Zhang Lihai Tang Peifu
Department of Orthopedics, Chinese PLA general hospital, Beijing 100853, China
关键词:
自噬 微小RNA RNA干扰 疾病
Keywords:
Autophagy MicroRNAs RNA interference Disease
DOI:
10.3877/cma.j.issn.2096-0263.2018.01.013
文献标志码:
A
摘要:
细胞自噬是进化过程中高度保守的物质降解再循环过程,是细胞将异常蛋白质、受损细胞器转运至溶酶体降解再利用的活动。自噬过程受到精密的调控。自噬功能障碍与神经退行性疾病、心血管疾病、肿瘤、骨代谢疾病、衰老等的发生有关。MicroRNA是一类对基因进行转录后修饰的非编码单链小RNA。越来越多的证据表明,MicroRNA可以通过调控自噬相关基因及其调节因子来影响自噬水平,是治疗自噬功能障碍所引发疾病的潜在靶点。本文对有关MicroRNA参与自噬调控的最新动态进行综述。
Abstract:
Autophagy is a highly conserved cellular self-digestion and catabolism process in which proteins, damaged organelles in the cytoplasm were delivered to the lysosome for degradation. The dysregulation of autophagy can induce many pathological disorders, including neurodegenerative diseases, heart diseases, cancer, bone metabolic diseases and senility. It’s under precise control. MicroRNA is a classic functional small RNA molecules that regulate target genes at a post-transcriptional level. More and more studies indicated that microRNAs are involved in the regulation of autophagy-related genes and other regulatory factors. It is also a potential target in treating disregulated autophagy diseases by changing the level of autophagy through related genes and factors regulation. This review aims to summarize the latest reports on microRNA and autophagy regulation.

参考文献/References:

1 Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging [J]. J Biol Chem, 2013, 288(24): 17432-17440.
2 Sambandam Y, Townsend MT, Pierce JJ, et al. Microgravity control of autophagy modulates osteoclastogenesis [J]. Bone, 2014, 61: 125-131.
3 Yang GE, Duan X, Lin D, et al. Rapamycin-induced autophagy activity promotes bone fracture healing in rats [J]. Exp Ther Med, 2015, 10(4): 1327-1333.
4 Zhao S Lu N, Chai Y, Yu X. Rapamycin inhibits tumor growth of human osteosarcomas [J]. J BUON, 2015, 20(2): 588-594.
5 Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells [J]. FEBS Lett, 2014, 588(24): 4761-4768.
6 Wei F Liu Y, Guo Y, Xiang a, Wang G, Xue X, Lu Z. miR-99b-targeted mTOR induction contributes to irradiation resistance in pancreatic cancer [J]. Mol Cancer, 2013, 25(12): 81.
7 Chen Y, Liersch R, Detmar M. The miR-290-295 cluster suppresses autophagic cell death of melanoma cells [J]. Sci Rep, 2012, 2: 808.
8 Jin Y, Tymen SD, Chen D, et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing [J]. PLoS One, 2013, 8(5): e64434.
9 Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy [J]. Nat Cell Biol, 2010, 12(9): 814-822.
10 Levine B, Kroemer G. Autophagy in the pathogenesis of disease [J]. Cell, 2008, 132(1): 27-42.
11 Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues [J]. Cell, 2011, 147(4): 728-741.
12 Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging [J]. Cell, 2011, 146(5): 682-695.
13 Todde V, Veenhuis M, Van Der Klei IJ. Autophagy: principles and significance in health and disease [J]. Biochim Biophys Acta, 2009, 1792(1): 3-13.
14 Bursch W. The autophagosomal-lysosomal compartment in programmed cell death [J]. Cell Death Differ, 2001, 8(6): 569-581.
15 Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism [J]. Oncogene, 2004, 23(16): 2891-2906.
16 Nelson DA, White E. Exploiting different ways to die [J]. Genes Dev, 2004, 18(11): 1223-1226.
17 Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing [J]. EMBO J, 2000, 19(21): 5720-5728.
18 Alva AS, Gultekin SH, Baehrecke EH. Autophagy in human tumors:cell survival or death? [J]. Cell Death Differ, 2004, 11(9): 1046-1048.
19 Bauvy C, Gane P, Arico S, et al. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29 [J]. Exp Cell Res, 2001, 268(2): 139-149.
20 Lipinski MM, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease [J]. Proc Natl Acad Sci U S A, 2010, 107(32): 14164-14169.
21 Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in Life extends lifespan in genetically heterogeneous mice [J]. Nature, 2009, 460(7253): 392-395.
22 Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice [J]. Science, 2011, 334(6062): 1573-1577.
23 Yang Y, Coleman M, Zhang LH, et al. Autophagy in axonal and dendritic degeneration [J]. Trends Neurosci, 2013, 36(7): 418-428.
24 Liberski PP, Sikorska B, Hauw JJ, et al. Ultrastructural characteristics(or evaluation)of Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies or prion diseases [J]. Ultrastruct Pathol, 2010, 34(6): 351-361.
25 Nixon RA. The role of autophagy in neurodegenerative disease [J]. Nat Med, 2013, 19(8): 983-997.
26 Nassif M, Hetz C. Targeting autophagy in ALS: a complex mission [J]. Autophagy, 2011, 7(4): 450-453.
27 Crippa V, Sau D, Rusmini P, et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS) [J]. Hum Mol Genet, 2010, 19(17): 3440-3456.
28 Stern ST, Johnson DN. Role for nanomaterial-autophagy interaction in neurodegenerative disease [J]. Autophagy, 2008, 4(8): 1097-1100.
29 Shacka JJ, Roth KA, Zhang J. The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy [J]. Front Biosci, 2008, 13: 718-736.
30 Boya P Reggiori F, Codogno P. Emerging regulation and functions of autophagy [J]. Nat Cell Biol, 2013, 15(7): 713-720.
31 Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism [J]. Rev Endocr Metab Disord, 2014, 15(1): 11-20.
32 Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress [J]. Nat Med, 2007, 13(5): 619-624.
33 Troncoso R, Miguel Vicencio J, Parra VA, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy [J]. Cardiovasc Res, 2012, 93(2): 320-329.
34 Manolagas SC, Parfitt AM. What old means to bone [J]. Trends in Endocrinol Metab, 2010, 21(6): 369-374.
35 Helfrich MH, Hocking LJ. Genetics and aetiology of Pagetic disorders of bone [J]. Arch Biochem Biophys, 2008, 473(2): 172-182.
36 Sanchez CP, He YZ. Bone growth during rapamycin therapy in young rats [J]. BMC Pediatr, 2009, 9(3): 486-492.
37 Cejka D, Hayer S, Niederreiter B, et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis [J]. Arthritis Rheum, 2010, 62(8): 2294-2302.
38 Whitehouse CA, Waters S, Marchbank KA, et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity [J]. Proc Natl Acad Sci U S A, 2010, 107(29): 12913-12918.
39 He XJ, Eberhart JK, Postlethwait JH. MicroRNAs and micromanaging the skeleton in disease, development and evolution [J]. J Cell Mol Med, 2009, 13(4): 606-618.
40 Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells [J]. Autophagy, 2009, 5(6): 816-823.
41 Su Z, Yang Z, Xu Y, et al. MicroRNAs in apoptosis, autophagy and necroptosis [J]. Oncotarget, 2015, 6(11): 8474-8490.
42 Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression [J]. Tumour Biol, 2015.[Epub ahead of print]
43 Sun KT, Chen MY, Tu MG, et al. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation [J]. Bone, 2015, 73: 145-153.
44 Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway [J]. RNA Biol, 2015, 12(3): 343-353.
45 Yao Y, Jia T, Pan Y, et al. Using a novel microRNA delivery system to inhibit osteoclastogenesis [J]. Int J Mol Sci, 2015, 16(4): 8337-8350.
46 M’baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, et al. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223 [M]. Biochim Biophys Acta, 2015, 1852(10): 2202-2212.
47 Xia Yu, Chen Kun, Zhang Hua, et al. MicroRNA-124 involves in ankylosing spondylitis by targeting ANTXR2 [J]. Mod Rheumatol, 2015, 25(5): 784-789.
48 Franceschetti T, Dole NS, Kessler CB, et al. Pathway analysis of microRNA expression profile during murine osteoclastogenesis [J]. PLoS One, 2014 9(9):107262.
49 You L, Gu W, Chen L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway [J]. Int J Clin Exp Pathol, 2014, 7(10): 7249-7261.
50 Yu S, Geng Q, Ma J, et al. Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation [J]. Cell Death Dis, 2013, 4: e868.

备注/Memo

备注/Memo:
基金项目:青年科学基金(81401809)
更新日期/Last Update: 2018-01-31