[1]罗鹏远,赵阔,王忠正,等.关于温哥华C型股骨假体周围骨折采用不同长度锁定钢板固定的生物力学研究[J].中华老年骨科与康复电子杂志,2020,(01):18-24.[doi:10.3877/cma.j.issn.2096-0263.2020.01.005]
 Luo Pengyuan,Zhao Kuo,Wang Zhongzheng,et al.Biomechanical comparison of Vancouver C type periprosthetic femoral fractures Fixed with Locking Plate Of Different Length[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2020,(01):18-24.[doi:10.3877/cma.j.issn.2096-0263.2020.01.005]
点击复制

关于温哥华C型股骨假体周围骨折采用不同长度锁定钢板固定的生物力学研究()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2020年01期
页码:
18-24
栏目:
股骨骨折
出版日期:
2020-02-05

文章信息/Info

Title:
Biomechanical comparison of Vancouver C type periprosthetic femoral fractures Fixed with Locking Plate Of Different Length
作者:
罗鹏远赵阔王忠正尹英超张瑞鹏郭家良侯志勇张英泽
050051 石家庄,河北医科大学第三医院创伤急救中心,河北省骨科研究所,河北省骨科生物力学重点实验室
Author(s):
Luo Pengyuan Zhao Kuo Wang Zhongzheng Yin Yingchao Zhang Ruipeng Guo Jialiang Hou Zhiyong Zhang Yingze
Department of Orthopaedic Surgery, the Third Hospital of HebeiMedical University, Orthopedic Research Institution of Hebei Province, KeyLaboratory of Orthopedic Biomechanics of Hebei Province, Shijiazhuang 050051,China
关键词:
股骨假体周围骨折 温哥华 C型 生物力学 锁定钢板
Keywords:
Periprosthetic femoral fracture Vancouver Type C Biomechanics Locking plate
DOI:
10.3877/cma.j.issn.2096-0263.2020.01.005
文献标志码:
A
摘要:
目的 通过比较四种不同长度的锁定钢板在治疗温哥华C型股骨假体周围骨折的生物力学实验中的表现,来分析锁定钢板相对于股骨假体柄远端的位置与产生的刚度和应力集中情况的关系。方法 选取10对成人新鲜股骨标本,随机均分为四组,制作温哥华C型股骨假体周围骨折模型,以四种不同长度的锁定钢板固定:A组,钢板最近端双皮质锁定螺钉距离假体尖端1个股骨直径;B组,钢板最近端双皮质锁定螺钉与假体尖端平齐;C组,钢板最近端单皮质锁钉与假体尖端重叠1个股骨直径;D组,钢板最近端单皮质锁钉与假体尖端重叠2个股骨直径。分别进行轴向压载实验、扭转实验、内外四点侧弯实验及前后四点侧弯实验,记录各组数据并进行统计学分析;最后进行循环负载实验,记录骨折情况。结果 各组在各实验中表现出的刚度值有显著差异,D组刚度值最大(P<0.05);在循环负载实验中,D组骨折线分布于股骨假体尖端、近端锁钉以及钢板远端附近,A、C组的骨折线集中在近端锁钉与股骨假体尖端之间,B组骨折线集中在股骨假体尖端与钢板顶端的线性区域内,结果显示D组应力集中程度比A、B、C三组低(P<0.05)。结论 在使用锁定钢板治疗温哥华 C型股骨假体周围骨折时,随着钢板长度增加,内固定稳定性提高;锁定钢板与股骨假体柄尖端重叠固定不会增加应力集中,反而随着钢板与股骨假体重叠区域增加,应力显著分散。
Abstract:
Objective Comparing the biomechanical differences of four different locking plate fixation of different lengths in the treatment of Vancouver C type periprosthetic femoral fractures,the relationship between the position of locking plates relative to the distal end of the femoral stem and the stiffness and stress concentration was analyzed. Methods Ten pairs of fresh adult femoral specimens were randomly divided into four groups. Then, the modle of Vancouver C type periprosthetic femoral fractures was established. Fixed with locking plates of four different lengths: in group A, the proximal bicortical locking screw of the plate was 1 femoral diameter to the tip of the prosthesis; in group B, the proximal bicortical locking screw of the plate was the same level with the tip of the prosthesis; in group C, the proximal single cortical locking screw of the plate overlapped with the tip of the prosthesis by 1 femoral diameter; in group D, the proximal single cortical locking screw of the plate overlapped with the tip of the prosthesis by 2 femoral diameter. All of the models are performed by axial ballast test, torsion test, four-point bend test inside and outside, and four-point bend test front and behind. The data of each group were recorded and analyzed statisticallyby SPSS software. Finally, the cyclic loading test was carried out and the fracture line distribution was recorded. Results The stiffness of each group showed significant difference, and the stiffness of group D were the largest in all tests (P<0.05). In the cyclic loading experiment, the fracture of group D were distributed near the tips of femoral prosthesis, proximal locking nails and distal plates. The fracture of group A and C were concentrated between proximal locking nails and the tips of femoral prosthesis. The fracture of group B were concentrated in the linear region between the tips of femoral prosthesis and the tips of steel plates. The results showed that the stress concentration of group D was lower than that of group A, B and C (P<0.05). Conclusions In the treatment of Vancouver Ctype periprosthetic femoral fractures with locking plate, the stability of internal fixation increases with the plate length; the overlapping fixation of locking plate and the tip of femoral stem does not increase the stress concentration, and the stress is significantly dispersed, with increasing with the overlapping area of plate and femoral prosthesis.

参考文献/References:

1 Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement [J]. Lancet, 2007, 370(9597): 1508-1519.2 Tsiridis E, Pavlou G, Venkatesh R, et al. Periprosthetic femoral fractures around hip arthroplasty: current concepts in their management [J]. Hip Int, 2009, 19(2): 75-86.3 Della Rocca GJ, Leung KS, Pape HC. Periprostethicfracures:epidomiolgy and future projections [J]. J Orthop Trauma, 2011 (25): s66–70.4 MoretaJ, Aguirre U, Saez de Ugarte O, et al.Functional and radiological outcome of periprostethic femoral fracuresafterhip arthroplasty [J]. Injury, 2015, 46:292-298. 5 Dennis MG, Simon JA, Kummer FJ, et al. Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques [J]. J Arthroplasty, 2000, 15(4): 523-528.6 Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 [J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.7 Moore RE, Baldwin K, Austin MS, et al. A systematic review of open reduction and internal fixation of periprosthetic femur fractures with or without allograft strut, cerclage, and locked plates [J]. J Arthroplasty, 2014, 29(5): 872-876.8 Sheth NP, Brown NM, Moric M, et al. Operative treatment of early Peri-Prosthetic femur fractures following primary total hip arthroplasty [J]. J Arthroplasty, 2013, 28(2): 286-291.9 Singh JA, Jensen MR, Harmnsen SW, et al. Are gender, comorbidity, and obesity risk factors for postoperative periprosthetic fractures after primary total hip arthroplasty? [J]. J Arthroplasty 2013, 28(1):126-131.10 Duncan CP, Masri B. Fractures of the femur after hip replacement [J]. Instr Course Lect, 1995,44: 293-304.11 Giaretta S,?Momoli A,?Porcelli G, et al. Diagnosis andmanagement of periprosthetic femoral fractures after Hip arthroplasty[J]. Injury, 2019, 50Suppl 2: 29-33. .12 Lindahl H, Malchau H, Herberts P, et al. Periprosthetic femoral fracturesclassification and demographics of 1049 periprosthetic femoral fractures from the Swedish National Hip Arthroplasty Register[J]. J Arthroplasty, 2005, 20(7):857-865. 13 Lindahl H, Garellick G, Regner H, et al. Three hundred and twenty-one periprosthetic femoral fractures [J]. J Bone Joint SurgAm, 2006, 88A(6): 1215-1222.14 Zdero R, Walker R, Waddell JP, et al. Biomechanical evaluation periprosthetic femoral fracture fixation [J]. J Bone Joint Surg Am, 2008, 90(5):1068-1077.15 Demos HA, Briones MS, White PH, et al. A biomechanical comparison of periprosthetic femoral fracture fixation in normal and osteoporotic cadaveric bone [J]. J Arthroplasty, 2012, 27(5): 783-788.16 Fulkerson E, Koval K, Preston CF, et al. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems [J]. J Orthop Trauma, 2006, 20(2): 89-93.17 Tower SS, Beals RK. Fractures of the femur after hip replacement: the Oregon experience [J]. Orthop Clin North Am, 1999, 30(2):235-247.18 Kubiak EN, Haller JM, Kemper DD, et al. Does the lateral plate need to overlap the stem to mitigate stress concentration when treating Vancouver C periprosthetic supracondylar femur fracture? [J]. J Arthroplasty, 2015, 30(1): 104-108.19 Chakravarthy J, Bansal R, Cooper J. Locking plate osteosynthesis for Vancouver Type B1 and Type C periprosthetic fractures of femur: a report on 12 patients [J]. Injury, 2007, 38(6): 725-733.20 Fulkerson E, Tejwani N, Stuchin S, et al. Management of periprosthetic femur fractures with a first Generation locking plate [J]. Injury, 2007, 38(8): 965-972.21 Chakravarthy J, Bansal R, Cooper J. Locking plate osteosynthesis for Vancouver type B1 and type C periprosthetic fractures of femur:a report on 12 patients[J]. Injury, 2007, 38(6):725-733.22 Howell JR, Masri BA, Garbuz DS, et al. Cable plates and onlay allografts in periprosthetic femoral fractures after hip replacement: laboratory and clinical observations [J]. Instr Course Lect, 2004, 53: 99-110.23 Mamczak CN, Gardner MJ, Bolhofner B, et al. Interprosthetic femoral fractures [J]. J Orthop Trauma, 2010, 24(12): 740-744.24 Walcher MG, Giesinger K, Du Sart R, et al. Plate positioning in periprosthetic or interprosthetic femur fractures with stable Implants-A biomechanical study [J]. J Arthroplasty, 2016, 31(12): 2894-2899.25 Khalafi A, Curtiss S, Hazelwood S, et al. The effect of plate rotation on the stiffness of femoral LISS: a mechanical study [J]. J Orthop Trauma, 2006, 20(8): 542-546.26 Jaakkola JI, Douglas WL, Moore T, et al. Supracondylar femur fracture fixation Mechanical comparison of the 95°condylar side plate and screw versus 95°angled blade plate [J]. Acta OrthopScand, 2002, 73(1): 72-76.27 Weiser L, Korecki MA, Sellenschloh K, et al. The role of inter-prosthetic distance,cortical thickness and bone mineral density in the development of interprosthetic fractures of the femur: a biomechanical cadaver study[J]. Bone Joint J, 2014, 96-b(10):1378.28 Iesaka K, Kummer FJ, Di Cesare PE. Stress risers between two ipsilateral intramedullary stems: a finite-element and biomechanical analysis [J]. J Arthroplasty, 2005, 20(3): 386-391.29 Soenen M, Baracchi M, De Corte R, et al. Stemmed TKA in a femur with a total hip arthroplasty: is there a safe distance between the stem tips? [J]. J Arthroplasty, 2013, 28(8): 1437-1445.30 Harris T, Ruth J, Szivek J, et al. The effect of implant overlap on the mechanical properties of the femur [J]. J Trauma, 2003, 54(5):930-935.31 Kubiak EN, Fulkerson E, Strauss E, et al. The evolution of locked plates [J]. J Bone Joint Surg Am, 2006, 88 Suppl4:189-200.32 Egol KA, Kubiak EN, Fulkerson E, et al. Biomechanics of locked plates and screws [J]. J Orthop Trauma, 2004, 18(8): 488-493.

备注/Memo

备注/Memo:
国自然基金(81572162)
更新日期/Last Update: 2020-07-07