参考文献/References:
1 闫昭, 曹晓瑞, 孙孟帅, 等. 全膝关节翻修术中骨缺损的处理研究进展 [J]. 中华关节外科杂志: 电子版, 2018, 12(3): 84-89.2 危小东, 陈永岗, 刘佳, 等. 全膝关节置换术中胫骨平台骨缺损的最新处理进展 [J]. 实用骨科杂志, 2016, 22(12): 1100-1103.3 Sugita T, Aizawa T, Miyatake N, et al. Preliminary results of managing large medial tibial defects in primary total knee arthroplasty:autogenous morcellised bone graft [J]. Int Orthop, 2017, 41(5): 931-937.4 Vasso M, Beaufils P, Cerciello S, et al. Bone loss following knee arthroplasty:potential treatment options [J]. Arch Orthop Trauma Surg, 2014, 134(4): 543-553.5 叶一林, 朱天岳, 柴卫兵, 等. 混合植骨技术结合髋臼加强杯或钛网杯重建髋臼严重骨缺损 [J]. 中华骨科杂志, 2012, 32(9): 830-836.6 Venkatesan J, im S-K. Nano-Hydroxyapatite composite bioma- terials for bone tissue engineering-A review [J]. J Biomed Nano-technol, 2014, 10: 3124-3140.7 Tsukada S, Wakui M, Matsueda M. Metal block augmentation for bone defects of the medial tibia during primary total knee arthroplasty [J]. J Orthop Surg Res, 2013: 36.8 Chen Y, Zheng Z, Zhou R, et al. Developing a strontium-releasing graphene oxide/collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway [J]. ACS Applied Materials & Interfaces, 2019.9 Chekmazov IA, Riabov AL, Skalozub OI, et al. Biocomposite nanostructured materials for the bone defects filling by osteomyelitis [J]. Khirurgiia (Mosk), 2013 (8): 56.10 赵畅, 曾参军, 蔡道章. 髋膝关节翻修术中的关键问题及3D打印应对之策 [J]. 中华关节外科杂志:电子版, 2017, 11(3): 284-288.11 王荣诗, 谭伦, 周欣, 等. 3D打印技术在伴骨缺损髋关节置换(翻修)术中的应用 [J]. 临床骨科杂志, 2019, 22(2): 169-171.12 Prashad R, Yasar O. Three-Dimensional scaffold fabrication with inverse photolithography [J]. MRS Advances, 2016, 2(19/20): 1071-1075.13 Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density,uncompressed three-dimensional electrospun nanofibrous scaffold [J]. Biomaterials, 2011, 32(6): 1583-1590.14 Adnan H , Sukyoung K , Man-Woo H , et al. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth [J]. Biomed Research International, 2015, 2015: 1-12.15 Bianco JER , Rosa RG , Castillo AC , et al. Characterization of a novel decellularized bone marrow scaffold as inductive environment for hematopoietic stem cells [J]. Biomaterials Science, 2019, 7(1).16 Liu X, Zhu C, Li Y, et al. The preparation and in vitro evaluations of a nanoscaled injectable bone repair material [J]. J Nanomater, 2015 (4): 1-8.17 Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues [J]. Biotechnol Adv, 2016, 34(4): 422-434.18 El-Ghannam E, Ahmed. Bone Reconstruction:from bioceramics to tissue engineering [J]. Expert Rev Med Devices, 2005, 2(1): 87-101.19 W?odarski KH, W?odarski PK, Galus R. Bioactive composites for bone regeneration [J]. Ortop Traumatol Rehabil, 2008, 10(3): 201-210.20 Rahman MS, Rana MM, Lucas-Sebastian S, et al. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone [J]. Progress in Biomaterials, 2019, 8(3): 137-154.21 邬波, 柳椰, 马旭, 等. 3D打印个性化导航模板在全膝关节置换术中的应用 [J]. 中国骨与关节损伤杂志, 2017, 32(2): 148-151.22 Qiu YY, Yan CH, Chiu KY, et al. Review article:bone defect classifications in revision total knee arthroplasty [J]. J Orthop Surg (Hong Kong), 2011, 19(2): 238-243.23 Luo W, Huang L, Liu H, et al. Customized knee prosthesis in treatment of giant cell tumors of the proximal tibia: application of 3-dimensional printing technology in surgical design [J]. Med Sci Monit, 2017, 23: 1691-1700. 24 Wang Xing, Xing Helin, Zhang Guilan, et al. Restoration of a critical mandibular bone defect using human alveolar bone-derived stem cells and porous nano-HA/Collagen/PLA scaffold [J]. Stem Cells International, 2016: 1-13.25 Dewey MJ, Johnson EM, Weisgerber DW, et al. Shape-fitting collagen-PLA composite promotes osteogenic differentiation of porcine adipose stem cells [J]. J Mech Behav Biomed Mater, 2019, 95: 21-33.