[1]安非梦,王建忠.基因多态性与非创伤性股骨头坏死遗传易感性的研究进展[J].中华老年骨科与康复电子杂志,2020,(03):178-183.[doi:10.3877/cma.j.issn.2096-0263.2020.03.010]
 An Feimeng,Wang Jianzhong.Advances in research of gene polymorphisms in non-traumatic osteonecrosis of the femoral head[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2020,(03):178-183.[doi:10.3877/cma.j.issn.2096-0263.2020.03.010]
点击复制

基因多态性与非创伤性股骨头坏死遗传易感性的研究进展()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2020年03期
页码:
178-183
栏目:
综述
出版日期:
2020-06-05

文章信息/Info

Title:
Advances in research of gene polymorphisms in non-traumatic osteonecrosis of the femoral head
作者:
安非梦12王建忠2
010050 呼和浩特,内蒙古医科大学1,010030 呼和浩特,内蒙古医科大学第二附属医院创伤一科2
Author(s):
An Feimeng1 2 Wang Jianzhong2
1Inner Mongolia Medical University, Hohhot 010050, China; 2Department of Trauma, the Second Affliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China
关键词:
非创伤性股骨头坏死 发病机制 基因多态性 研究进展
Keywords:
Non-traumatic osteonecrosis of the femoral head Gene polymorphisms Pathogenesis Advances in research
DOI:
10.3877/cma.j.issn.2096-0263.2020.03.010
文献标志码:
A
摘要:
非创伤性股骨头坏死(NONFH)的发病与多种因素相关,如糖皮质激素、乙醇、减压病、镰刀细胞性贫血等,但无论是哪种病理过程最终均会导致骨细胞的死亡。近年来,随着分子遗传学的发展,利用分子生物学技术对基因与非创伤性股骨头坏死相关性进行病例对照研究,发现许多单核苷酸多态性 (SNPs)位点与该病的发病密切相关。本文结合近期的遗传基因学研究,着重对非创伤性股骨头坏死发病相关的基因加以综述,并对其研究前景进行展望。
Abstract:
Non-traumatic osteonecrosis of the femoral head (NONFH) is a disease with multiple aetiologies such as glucocorticoids, ethanol, decompression sickness and sickle cell anemia, with the death of osteocytes as the end stage of different pathological processes. Accompanied with the development of molecular genetics, a number of single nucleotide polymorphisms (SNPs) have been found to be closely related to the incidence of NONFH in case-control studies on the correlation between genes and NONFH by using molecular biology technologies. This article combined recent genetic studies to highlight the genetics of NONFH, and also discussed current problems and research prospect.

参考文献/References:

1 Kim HO, Cho CH, Cho YJ, et al. Significant associations of PAI-1 genetic polymorphisms with osteonecrosis of the femoral head [J]. BMC Musculoskelet Disord, 2011, 12: 160-160.2 Yin J M , Liu Z , Zhao S C , et al. Relationship between the Apolipoprotein AI, B gene polymorphism and the risk of non-traumatic osteonecrosis[J]. Lipids in Health and Disease, 2014, 13(1):149.3 Juhan-Vague J, I. Deficient t-PA release and elevated PA inhibitor levels in patients with spontaneous or recurrent deep venous thrombosis [J]. Thromb Haemost, 1987, 57(1): 67-72.4 Liguori, R. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor? [J]. Thromb Res, 2014, 134(6): 1229-1233.5 Brogren H, Karlsson L, Andersson M, et al. Platelets synthesize large amounts of active plasminogen activator inhibitor 1 [J]. Blood, 2004, 104(13): 3943-3948.6 Al-Horani RA. Serpin regulation of fibrinolytic system: implications for therapeutic applications in cardiovascular diseases [J]. Cardiovasc Hematol Agents Med Chem, 2014, 12(2): 91-125.7 Chapman MP, Moore EE, Moore HB, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients [J]. J Trauma Acute Care Surg, 2016, 80(1): 16-25.8 Dawson S, Hamsten A, Wiman B, et al. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity [J]. Arterioscler Thromb, 1991, 11(1): 183-190.9 Eriksson P, Kallin B, Vanthooft FM, et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction [J]. Proc Natl Acad Sci USA, 1995, 92(6): 1851-1855.10 Li Y, Liu FX, Yuan C, et al. Association between plasminogen activator inhibitor gene polymorphisms and osteonecrosis of the femoral head susceptibility: A case-control study [J]. Medicine (Baltimore), 2017, 96(42): e7047.11 Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action [J]. J Steroid Biochem Mol Biol, 2009, 114(3/5): 121-128.12 Gong LL, Fang LH, Wang HY, et al. Genetic risk factors for glucocorticoid-induced osteonecrosis: a meta-analysis [J]. Steroids, 2013, 78(4): 401-408.13 Hosseini, S. Genetic risk factors in patients with deep venous thrombosis,a retrospective case control study on Iranian population [J]. Thromb J, 2015, 13: 35.14 Girard TJ, Warren LA, Novotny WF, et al. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor [J]. Nature, 1989, 338(6215): 518-520.15 Lindahl AK. Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle [J]. Cardiovasc Res, 1997, 33(2): 286-291.16 Rapaport SI, Rao LV. The tissue factor pathway: how it has become a "prima ballerina" [J]. Thromb Haemost, 1995, 74(1): 7-17.17 Amini-Nekoo A, Futers TS, Moia M, et al. Analysis of the tissue factor pathway inhibitor gene and antigen levels in relation to venous thrombosis [J]. Br J Haematol, 2001, 113(2): 537-543.18 He MX, Wen ZB, He XF, et al. Observation on tissue factor pathway and some other coagulation parameters during the onset of acute cerebrocardiac thrombotic diseases [J]. Thromb Res, 2002, 107(5): 223-228.19 Ameziane N, Seguin C, Borgel D, et al. The-33T -> C polymorphism in intron 7 of the TFPI gene influences the risk of venous thromboembolism, independently of the factor V Leiden and prothrombin mutations [J]. Thromb Haemost, 2002, 88(2): 195-199.20 Moatti D, Seknadji P, Galand C, et al. Polymorphisms of the tissue factor pathway inhibitor (TFPI) gene in patients with acute coronary syndromes and in healthy subjects - Impact of the V264M substitution on plasma levels of TFPI [J]. Arterioscler Thromb Vasc Biol, 1999, 19(4): 862-869.21 Moatti, D. A new T-287C polymorphism in the 5’regulatory region of the tissue factor pathway inhibitor gene Association study of the T-287C and C-399T polymorphisms with coronary artery disease and plasma TFPI levels [J]. Thromb Haemost, 2000, 84(2): 244-249.22 Dai XL, Hong JM, Oh B, et al. Association analysis of tissue factor pathway inhibitor polymorphisms and haplotypes with osteonecrosis of the femoral head in the korean population [J]. Mol Cells, 2008, 26(5): 490-495.23 Heijer D, M. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis [J]. N Engl J Med, 1996, 334(12): 759-762.24 Zalavras CG, Malizos KN, Dokou E, et al. The 677C -> T mutation of the methylene-tetra-hydrofolate reductase gene in the pathogenesis of osteonecrosis of the femoral head [J]. Haematologica, 2002, 87(1): 111-112.25 Chang JD, Hur M, Lee SS, et al. Genetic background of nontraumatic osteonecrosis of the femoral head in the Korean population [J]. Clin Orthop Relat Res, 2008, 466(5): 1041-1046.26 Asano T, Takahashi KA, Fujioka M, et al. Relationship between postrenal transplant osteonecrosis of the femoral head and gene polymorphisms related to the coagulation and fibrinolytic systems in Japanese subjects [J]. Transplantation, 2004, 77(2): 220-225.27 Primo-Parmo SL, Sorenson RC, Teiber J, et al. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family [J]. Genomics, 1996, 33(3): 498-507.28 Mackness M, Mackness B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles [J]. Gene, 2015, 567(1): 12-21.29 Deakin S, Leviev I, Gomaraschi M, et al. Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism [J]. J Biol Chem, 2002, 277(6): 4301-4308.30 Pera-Kajan J, Jakubowski H. Paraoxonase 1 and homocysteine metabolism [J]. Amino Acids, 2012, 43(4): 1405-1417.31 Shih DM, Lusis AJ. The roles of PON1 and PON2 in cardiovascular disease and innate immunity [J]. Curr Opin Lipidol, 2009, 20(4): 288-292.32 Fridman O,?Fuchs AG,?Porcile R, et al. [Paraoxonase: its multiple functions and pharmacological regulation]. Arch Cardiol Mex, 2011, 81(3): 251-260.33 Cui Y, Kaisaierjiang A, Cao P, et al. Association of apolipoprotein A5 genetic polymorphisms with steroid-induced osteonecrosis of femoral head in a Chinese Han population [J]. Diagn Pathol, 2014, 9(1): 229-229.34 Miyanishi K, Yamamoto T, Irisa T, et al. Increased level of apolipoprotein B/apolipoprotein A1 ratio as a potential risk for osteonecrosis [J]. Ann Rheum Dis, 1999, 58(8): 514-516.35 Schmidt R, Schmidt H, Fazekas F, et al. MRI cerebral white matter lesions and paraoxonase PON1 polymorphisms - Three-year follow-up of the Austrian stroke prevention study [J]. Arterioscler Thromb Vasc Biol, 2000, 20(7): 1811-1816.36 Hadjigeorgiou GM, Malizos K, Dardiotis E, et al. Paraoxonase 1 gene polymorphisms in patients with osteonecrosis of the femoral head with and without cerebral white matter lesions [J]. J Orthop Res, 2007, 25(8): 1087-1093.37 Wang Z,?Zhang Y,?Kong X, et al. Association of a polymorphism in PON-1 gene with steroid-induced osteonecrosis of femoral head in Chinese Han population [J]. Diagn Pathol, 2013, 8: 186.38 Li JM, Li Y, Wang L. The genetic association between PON1 polymorphisms and osteonecrosis of femoral head: A case-control study [J]. Medicine (Baltimore), 2017, 96(42): e8198.39 Wang XD, Sato R, Brown MS, et al. SREBP-1, a?membrane-bound?transcription?factor?released?by?sterol-regulated?proteolysis [J]. Cell, 1994, 77(1): 53-62.40 Kolehmainen M, Vidal H, Alhava E, et al. Sterol regulatory element binding protein 1c (SREBP-1c) expression in human obesity [J]. Obes Res, 2001, 9(11): 706-712.41 Oberkofler H, Fukushima N, Esterbauer H, et al. Sterol regulatory element binding proteins: relationship of adipose tissue gene expression with obesity in humans [J]. Biochim Biophys Acta, 2002, 1575(1/3): 75-81.42 You M, Crabb DW. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins [J]. Alcohol, 2004, 34(1): 39-43.43 Lee HJ, Choi SJ, Hong JM, et al. Association of a polymorphism in the intron 7 of the SREBF1 gene with osteonecrosis of the femoral head in koreans [J]. Ann Hum Genet, 2009, 73(1): 34-41.44 Wang YS, Li YB, Mao KY, et al. Alcohol-induced adipogenesis in bone and marrow: A possible mechanism for osteonecrosis [J]. Clin Orthop Relat Res, 2003, 410(410): 213-224.45 Olszewski MB, Groot AJ, Dastych J, et al. TNF trafficking to human mast cell granules: Mature chain-dependent endocytosis [J]. J Immunol, 2007, 178(9): 5701-5709.46 Hayashi K, Piras V, Tabata S, et al. A systems biology approach to suppress TNF-induced proinflammatory gene expressions [J]. Cell Commun Signal, 2013, 11(1): 1-15.47 Shibahara M, Nishida K, Asahara H, et al. Increased osteocyte apoptosis during the development of femoral head osteonecrosis in spontaneously hypertensive rats [J]. Acta Med Okayama, 2000, 54(2): 67-74.48 Dai CY, Chuang WL, Lee LP, et al. Associations of tumour necrosis factor alpha promoter polymorphisms at position-308 and -238 with clinical characteristics of chronic hepatitis C [J]. J Viral Hepat, 2006, 13(11): 770-774.49 Scheper MA, Badros A, Chaisuparat R, et al. Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis [J]. Br J Haematol, 2009, 144(5): 667-676.50 Okazaki S, Nishitani Y, Nagoya S, et al. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway [J]. Rheumatology (Oxford), 2009, 48(3): 227-232.51 Wu X, Feng X, He Y, et al. IL-4 administration exerts preventive effects via suppression of underlying inflammation and TNF-α-induced apoptosis in steroid-induced osteonecrosis [J]. Osteoporos Int, 2016, 27(5): 1-11.52 Zhang BB, Liu XZ, Sun J, et al. Association between TNF α gene polymorphisms and the risk of duodenal ulcer: a meta-analysis [J]. PLoS One, 2013, 8(2): e57167.53 Samara S, Kollia P, Dailiana Z, et al. Predictive role of cytokine gene polymorphisms for the development of femoral head osteonecrosis [J]. Dis Markers, 2012, 33(4): 215-221.54 Sghaier I, Zidi S, Mouelhi L, et al. The relationship between TNF alpha gene polymorphisms (-238/-308), TNF RII VNTR (p75) and outcomes of hepatitis B virus infection in Tunisian population [J]. Gene, 2015, 568(2): 140-145.55 Peng YZ, Liu YE, Huang DH, et al. Association of TNF-alpha-308(G/A) and-238(G/A) polymorphisms with non-traumatic osteonecrosis of the femoral head risks: a meta-analysis [J]. Int Orthop, 2018, 42(7, SI): 1711-1721.56 Tyrovola, J B. Root resorption and the OPG/RANKL/RANK system: a mini review [J]. J Oral Sci, 2008, 50(4): 367-376.57 Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in osteoclastogenesis and bone disease [J]. Trends Mol Med, 2006, 12(1): 17-25.58 Hofbauer LC. Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG) [J]. Ann Endocrinol (Paris), 2006. 67(2): 139-41.59 Boyce BF, Xing L. The RANKL/RANK/OPG pathway [J]. Curr Osteoporos Rep, 2007. 5(3): 98-104.60 Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling [J]. Arch Biochem Biophys, 2008, 473(2): 139-146.61 Li YZ, Wang Y, Guo YC, et al. OPG and RANKL polymorphisms are associated with alcohol-induced osteonecrosis of the femoral head in the North area of China population in men [J]. Medicine (Baltimore), 2016, 95(25): e3981-e3981.62 Li YZ, Guo YC, Wang QJ, et al. Osteoprotegerin polymorphisms are associated with alcohol-induced osteonecrosis of femoral head in Chinese Han population from Henan province [J]. J Genet, 2016, 95(4): 983-989.63 Karsdal MA1,?Andersen TA,?Bonewald L, et al. Safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes:MT1-MMP maintains osteocyte viability [J]. DNA Cell Biol, 2004, 23(3): 155-165.64 Nakai K, Kawato T, Morita T, et al. Angiotensin II induces the production of MMP-3 and MMP-13 through the MAPK signaling pathways via the AT(1) receptor in osteoblasts [J]. Biochimie, 2013, 95(4): 922-933.65 Mosig RA, Dowling O, Difeo A, et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth [J]. Hum Mol Genet, 2007, 16(9): 1113-1123.66 Shi J, Son MY, Yamada S, et al. Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis [J]. Dev Biol, 2008, 313(1): 196-209.67 Ota I, Li XY, Hu YE, et al. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1 [J]. Proc Natl Acad Sci U S A, 2009, 106(48): 20318-20323.68 Radisky ES, Radisky DC. Matrix Metalloproteinase-Induced Epithelial-Mesenchymal transition in breast cancer [J]. J Mammary Gland Biol Neoplasia, 2010, 15(2): 201-212.69 Vidal NO, Brandstrom H, Jonsson KB, et al. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids [J]. J Endocrinol, 1998, 159(1): 191-195.70 Geoffroy V, Marty-Morieux C, Le Goupil N, et al. In vivo inhibition of osteoblastic metalloproteinases leads to increased trabecular bone mass [J]. J Bone Miner Res, 2004, 19(5): 811-822.71 Bord S, Horner A, Beeton CA, et al. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) distribution in normal and pathological human bone [J]. Bone, 1999, 24(3): 229-235.72 Du JL, Jin TB, Cao YJ, et al. Association between genetic polymorphisms of MMP8 and the risk of steroid-induced osteonecrosis of the femoral head in the population of northern China [J]. Medicine, 2016, 95(37): e4794-e4794.73 Du J, Liu W, Jin T, et al. A single-nucleotide polymorphism in MMP9 is associated with decreased risk of steroid-induced osteonecrosis of the femoral head [J]. Oncotarget, 2016, 7(42): 68434-68441.74 Chen JY, Liu WL, Cao YJ, et al. MMP-3 and MMP-8 single-nucleotide polymorphisms are related to alcohol-induced osteonecrosis of the femoral head in Chinese males [J]. Oncotarget, 2017, 8(15): 25177-25188.75 Koo KH, Lee JS, Lee YJ, et al. Endothelial nitric oxide synthase gene polymorphisms in patients with nontraumatic femoral head osteonecrosis [J]. J Orthop Res, 2006, 24(8): 1722-1728.76 Gagala J, Buraczynska M, Tomasz Mazurkiewicz. Endothelial nitric oxide synthase gene intron 4 polymorphism in non-traumatic osteonecrosis of the femoral head[J]. International Orthopaedics, 2013, 37(7):1381-1385.77 Zhen Xiao, Corinne E Camalier, Kunio Nagashima, et al.. Analysis of the Extracellular Matric Vesicle Proteiome in mineralizing osteoblasts [J]. Journal of Cellular Physiology, 2007, 210(2):325-335.78 Kim T H , Hong J M , Shin E S , et al. Polymorphisms in the Annexin gene family and the risk of osteonecrosis of the femoral head in the Korean population[J]. Bone, 2009, 45(1):0-131.79 Wang J , Liu H , Zhang Q . IGF-1 polymorphisms modulate the susceptibility to osteonecrosis of the femoral head among Chinese Han population[J]. Medicine, 2019, 98.

相似文献/References:

[1]张坤淇,张睿,徐佳,等.漂浮膝损伤的诊治进展[J].中华老年骨科与康复电子杂志,2023,(04):252.[doi:10.3877/cma.j.issn.2096-0263.2023.04.009]
 Zhang Kunqi,Zhang Rui,Xu Jia,et al.The progress of the management of floating knee injury[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2023,(03):252.[doi:10.3877/cma.j.issn.2096-0263.2023.04.009]

备注/Memo

备注/Memo:
国家自然科学基金(81160228,81260284,81660378)
更新日期/Last Update: 2020-07-07