[1]李颖,童梁成,杨智伟,等.四维有限元骨承载力分析技术在判断长管骨愈合程度中的应用[J].中华老年骨科与康复电子杂志,2020,(06):312-320.[doi:10.3877/cma.j.issn.2096-0263.2020.06.001]
 Application of four-dimensional finite element bone bearing capacity analysis in estimating the degree of long tube bone healing[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2020,(06):312-320.[doi:10.3877/cma.j.issn.2096-0263.2020.06.001]
点击复制

四维有限元骨承载力分析技术在判断长管骨愈合程度中的应用()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2020年06期
页码:
312-320
栏目:
基础研究
出版日期:
2020-12-05

文章信息/Info

Title:
Application of four-dimensional finite element bone bearing capacity analysis in estimating the degree of long tube bone healing
作者:
李颖12童梁成1杨智伟1蒋继亮1汪剑龄1杨俊生1邢建新3
210002 南京,解放军东部战区空军医院骨科1;230032 合肥,安徽医科大学2;210002 南京,南京市雨花医院3
Author(s):
Li Ying1,2, Tong Liangcheng1, Yang Zhiwei1, Jiang Jiliang1, Wang Jianling1, Yang Junsheng1, Xing Jianxin3. 1Department of Orthopedics, Eastern Air Force Hospital of PLA, Nanjing 21002, China; 2Anhui Medical University, Hefei 230032, China; 3Department of Orthopedics, Yuhua Hospital, Nanjing 21002, ChinaCorresponding author: Li Ying, Email: ying4547@163.com
关键词:
骨生物力学 有限元分析 骨愈合 骨承载力分析
Keywords:
Bone biomechanics Finite element analysis Bone healing Bone bearing capacity analysis
DOI:
10.3877/cma.j.issn.2096-0263.2020.06.001
文献标志码:
A
摘要:
目的 利用四维有限元骨承载力分析的方法,对于长管骨骨折术后患者采用双腿平行CT扫描、双腿几何建模、有限元分析的方法,通过与健侧肢体相同部位的对比分析,根据时间轴上的变化趋势,判断目标骨段骨愈合的程度,辅助诊断长管骨的骨愈合、骨延迟愈合和骨不连。方法 选择2014年到2017年间,临床诊断骨延迟愈合的26例病例进行了系统随访。在骨愈合不同阶段的CT数据进行三维建模,材料赋值,建立下肢长管骨的三维有限元模型,模拟仿真计算目标骨段承载受力状况,通过有限元分析软件,进行单轴压缩实验的仿真,分析双腿目标骨段的受载荷情况。结合米塞斯应力最大值及载力-位移曲线下总面积进行比值分析,作为观察骨愈合程度的指标,对于临床诊断进行二次修正,并观察最终临床愈合结果。结果 所有病例均获得2~4年的随访,平均随访时间3.4年。临床诊断骨延迟愈合完整病例26例,对26例病例采用有限元骨承载力分析法共分析54次,修正诊断为:6例(23.1%)病例判定骨愈合;16例(61.5%)病例判定骨愈合不良;4例(15.4%)病例判定骨不连。利用米塞斯应力最大值及载力-位移曲线下总面积进行比值分析,并进行卡方检验,差异无统计学意义。通过Fisher精确概率检验法得到P=0.170,具有统计学意义,两种方法存在非随机相关性。结论 采用有限元骨承载力分析的技术,可以三维定量分析骨折端的骨愈合程度,结合时间轴上变化规律的描述,可以给骨不连和骨延迟愈合的临床诊断提供一个相对客观的诊断依据。该方法也较好的观察到,高能量损伤的骨愈合过程难以按照经典骨愈合理论的进程演变,通常其骨愈合所需的时间更长,但能显示出其缓慢的愈合趋势,应用前景广阔。
Abstract:
Objective Using the method of four-dimensional finite element analysis of bone bearing capacity, using the methods of parallel CT scanning of both legs, geometric modeling of both legs and finite element analysis for postoperative patients with long bone fracture, through the comparative analysis of the same part of the healthy limb, and according to the changing trend on the time axis, to judge the degree of bone healing of the target bone segment, and to assist in the diagnosis of bone healing, delayed union and nonunion of long bone. Methods From 2014 to 2017, 26 cases of clinically diagnosed femoral bone healing were systematically followed up. The CT data were used for three-dimensional modeling and material assignment, and the three-dimensional finite element model of the long bone of the lower limb was established, and the bearing force of the target bone segment was simulated and calculated. Through the finite element analysis software, the uniaxial compression experiment was carried out to analyze the load of the target bone segment of both legs. Combined with the maximum value of Mises stress and the total area under the stress-strain curve, the ratio analysis was used as an index to observe the degree of bone healing, the clinical diagnosis was modified twice, and the final clinical healing results were observed. Results All patients were followed for 2 to 4 years, with an average follow-up time of 3.4 years. There were 26 cases clinically diagnosed with delayed bone union and complete bone union. The finite element bone bearing capacity analysis was used to analyze the 26 cases for a total of 54 times. The revised diagnosis was: 6 cases (23.1%) were bone union. Poor bone union was determined in 16 cases (61.5%). Bone nonunion was determined in 4 cases (15.4%). The ratio analysis was performed using the mises maximum stress and the total area under the stress-strain curve, and the chi-square test was performed (P>0.05), showing no statistical difference. Fisher’s exact probability test (P=0.170) showed statistical significance, and there was a non-random correlation between the two methods. Conclusions By using the technique of finite element bone bearing capacity analysis, the degree of bone healing at the fracture end can be analyzed quantitatively in three dimensions, combined with the description of the changing law in the time axis. It can provide a relatively objective diagnostic basis for the clinical diagnosis of nonunion and delayed union. This method can also well observe that the bone healing process of high energy injury is difficult to evolve according to the classical bone healing theory, and it usually takes a longer time for bone healing, but it can show its slow healing trend and has a broad application prospect.

参考文献/References:

1 裴国献等. 洛克伍德-格林成人骨折 [M] . 北京: 人民军医出版社, 2014: 632-635.2 Elliott DS, Newman KJ, Forward DP, et al. A unified theory of bone healing and nonunion: BHN theory [J]. Bone Joint J, 2016, 98-B(7): 884-891.3 李颖, 费王华, 樊黎霞, 等. 新鲜长管状骨的三维有限元分析 [J]. 中国骨与关节损伤杂志, 2010, 25(11): 991-993.4 胥少汀, 葛宝丰, 徐印坎. 实用骨科学(上下册) [M]. 第4版. 北京: 人民军医出版, 2012: 1153-1179.5 Beskopylny A, Meskhi B, Kadomtseva E, et al. Transverse impact on rectangular metal and reinforced concrete beams taking into account bimodularity of the material [J]. Materials (Basel), 2020, 13(7): 1579.6 Liu S, Xu S, Song JF, et al. Mechanical properties and failure deformation mechanisms of yak Horn under quasi-static compression and dynamic impact [J]. J Mech Behav Biomed Mater, 2020, 107: 103753.7 Borie E, Leal E, Orsi IA, et al. Influence of transmucosal height in abutments of single and multiple implant-supported prostheses: a non-linear three-dimensional finite element analysis [J]. Comput Methods Biomech Biomed Engin, 2018, 21(1): 91-97.8 Iori G, Peralta L, Reisinger A, et al. Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck [J]. Med Eng Phys, 2020, 79: 60-66.9 Wang SJ, Wei HW, Chen CS, et al. And"prediction of femoral fracture load using finite element models:an examination of stress-and strain-based failure theories"by J.H.keyak [J]. J Biomech, 2001, 34(00): 00171-00178.10 张玺, 胡永成, 耿欣, 等. 老年肱骨近端骨折患者皮质骨厚度与骨密度相关性分析 [J]. 中华老年骨科与康复电子杂志, 2015 (1): 16-21.11 殷照阳, 霍永峰, 刘新晖, 等. 雷帕霉素调节自噬抑制凋亡促进骨折愈合的机制研究 [J]. 中华老年骨科与康复电子杂志, 2019, 5(1): 25-32.12 颜继英. 不同材料赋值下股骨静力学有限元模型的力学仿真分析 [J]. 中国组织工程研究, 2020, 24(9): 1390-1394.13 樊黎霞, 丁光兴, 费王华, 等. 基于CT图像的长管骨有限元材料属性研究及实验验证 [J]. 医用生物力学, 2012, 27(1): 102-108.14 李兴, 王洪福, 罗伟, 等. 基于术后髋骨CT数据重建个性化骨肌多体动力学模型及步态仿真 [J]. 中国组织工程研究, 2017, 021(035): 5685-5690.15 裴国献. 数字骨科:骨科领域的第三次技术浪潮 [J]. 中华创伤骨科杂志, 2019, 21(1): 3-5.16 陈波杰, 丁真奇. 有限元分析在骨折愈合与生物力学研究中的应用 [J]. 广东医学, 2015, 36(8): 1288-1290.17 Poole KE, Treece GM, Gee AH, et al. Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis [J]. J Bone Miner Res, 2015, 30(1): 46-54.18 Hassan M, Faris T, Ali M, et al. Finite element modelling and characterization of 3D cellular microstructures for the design of a cementless biomimetic porous hip stem [J]. Mater Des, 2018, 149: 101-112.19 Campbell GM, Glüer CC. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation [J]. Curr Opin Rheumatol, 2017, 29(4): 402-409.20 Ramlee MH, Gan HS, Daud S, et al. Stress distributions and micromovement of fragment bone of pilon fracture treated with external fixator: a finite element analysis [J]. J Foot Ankle Surg, 2020, 59(4): 664-672.21 Ma CC, Wu FT, Feng P, et al. Bone microarchitecture, volumetric or areal bone mineral density for discrimination of vertebral deformity in adults: a cross-sectional study [J]. Journal of Clinical Densitometry, 2020: 005.

相似文献/References:

[1]邵明昊 吕飞舟 马晓生 夏新雷 王洪立 郑超君 张帆 姜建元.腰椎皮质骨钉道螺钉在骨质疏松症患者中 应用的三维有限元分析[J].中华老年骨科与康复电子杂志,2015,(02):1.[doi:10.3877/cma.j.issn.2096-0263.2015.02.001]
 Shao Minghao,Lyu Feizhou,Ma Xiaosheng,et al.Biomechanical evaluation of lumbar pedicle screws using cortical bone trajectory in osteoporosis : a finite element study[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2015,(06):1.[doi:10.3877/cma.j.issn.2096-0263.2015.02.001]
[2]王晖,杨朝旭,孟凡涛.胫骨托盘的不同结构设计对胫骨应力分布的影响[J].中华老年骨科与康复电子杂志,2020,(06):321.[doi:10.3877/cma.j.issn.2096-0263.2020.06.002]
 Wang Hui,Yang?Chaoxu,Meng?Fantao.The effect of different structural designed tibial tray on the stress distribution of tibia[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2020,(06):321.[doi:10.3877/cma.j.issn.2096-0263.2020.06.002]
[3]杜兵,马腾,路遥,等.新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J].中华老年骨科与康复电子杂志,2021,(06):333.[doi:10.3877/cma.j.issn.2096-0263.2021.06.003]
 Du Bing,Ma Teng,et al.Finite Element Analysis of the new femoral neck internal fixationsystem and three hollow screws plus medial plate fixation for Pauwels III femoral neck fractures in young adults[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2021,(06):333.[doi:10.3877/cma.j.issn.2096-0263.2021.06.003]
[4]朱燕宾,程晓东,王宇钏,等.股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J].中华老年骨科与康复电子杂志,2022,(05):257.[doi:10.3877/cma.j.issn.2096-0263.2022.05.001]
 Zhu Yanbin,Cheng Xiaodong,Wang Yuchuan,et al.Partial femoral head replacement for precise minimally invasive treatment of ARCO Ⅲ femoral bone necrosis in middle-age and elderly patients: finite element analysis[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2022,(06):257.[doi:10.3877/cma.j.issn.2096-0263.2022.05.001]
[5]张乾龙,王继荣,宋晨辉,等.两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J].中华老年骨科与康复电子杂志,2023,(04):209.[doi:10.3877/cma.j.issn.2096-0263.2023.04.003]
 Zhang Qianlong,Wang Jirong,Song Chenhui,et al.Finite Element Analysis of Two Kinds of Intramedullary Nails Fixing A3.1 Intertrochanteric Fracture: Enhanced PFNA and Intertan[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2023,(06):209.[doi:10.3877/cma.j.issn.2096-0263.2023.04.003]

备注/Memo

备注/Memo:
基金项目:南京军区医学科技创新项目(NO.15DX012),南京市医学科技发展项目(NO.201503008)
更新日期/Last Update: 2020-12-31