[1]马宁,刘雨丰,陈明学,等.仿生组织工程软骨修复关节软骨损伤的效果及应用超声弹性成像方法检测价值分析[J].中华老年骨科与康复电子杂志,2020,(02):62-67.[doi:10.3877/cma.j.issn.2096-0263.2020.02.001]
 Ma Ning,Liu Yufeng,Chen Mingxue,et al.The effect of bionic tissue-engineered cartilage in repairing articular cartilage injury and the test value of ultrasonic elastography method[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2020,(02):62-67.[doi:10.3877/cma.j.issn.2096-0263.2020.02.001]
点击复制

仿生组织工程软骨修复关节软骨损伤的效果及应用超声弹性成像方法检测价值分析()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2020年02期
页码:
62-67
栏目:
基础研究
出版日期:
2020-04-05

文章信息/Info

Title:
The effect of bionic tissue-engineered cartilage in repairing articular cartilage injury and the test value of ultrasonic elastography method
作者:
马宁刘雨丰陈明学王月香万一群刘舒云眭翔郭全义
100853 北京,解放军总医院骨科研究所
Author(s):
Ma Ning Liu Yufeng Chen Mingxue Wang Yuexiang Wan Yiqun Liu Shuyun Sui Xiang Guo Quanyi.
Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, China
关键词:
超声 弹性成像技术 软骨 组织工程 仿生支架
Keywords:
Ultrasonography Elasticity imaging techniques Cartilage Tissue engineering Bionic?scaffold
DOI:
10.3877/cma.j.issn.2096-0263.2020.02.001
文献标志码:
A
摘要:
目的 体外构建的仿生组织工程软骨修复羊膝关节软骨损伤,通过组织学染色、点压力学分析、超声弹性成像检查来评价修复效果,探讨超声弹性成像方法评估再生软骨质量的可行性。方法 共选用雄性山羊12只,随机分A、B、C三组,A组空白对照组2只,仅做股骨髁负重区直径6 mm全层软骨缺损;B组单纯仿生软骨(ECM)支架修复组4只,在股骨髁负重区软骨缺损处仅植入仿生软骨支架;C组仿生软骨支架复合自体骨髓间充质干细胞(BMSCs)组6只。取自体髂骨骨髓血分离骨髓间充质干细胞培养,细胞浓度达到1×107个/毫升后加入仿生软骨支架中,将构建好的仿生组织工程软骨植入股骨髁软骨缺损中。每组的羊均先在左膝造模,术后3个月再右膝造模,待右膝术后3个月时先行超声弹性成像检查,然后取材行评分,病理染色、糖胺多糖(GAG)含量测定、力学检测分析。结果 3个月和6个月的A组基本无软骨组织修复。在大体评分、病理评分、GAG含量测定、点压力学测试的结果显示C组优于B组(P<0.05),并且B组与C组中的6月数据均明显优于3个月(P<0.05)。其中C组动物6个月取材发现重建软骨更接近正常软骨组织。修复组织大体形态结果,点压力学测试结果与超声弹性成像检查结果对比基本一致。结论 利用组织工程方法构建仿生软骨可治疗早期软骨损伤,复合自体骨髓间充质干细胞的仿生支架能达到更好的修复效果。软骨损伤经过仿生软骨修复后恢复周期在6个月以上。超声弹性成像检查软骨修复效果可作为术后复查简单快捷有效的方法。
Abstract:
Objective In vitro construction of bionic tissue engineering cartilage and repair goat knee cartilage injury. Use of histological staining, mechanical analysis, ultrasound elastography examination, evaluation of the repair effect of this method, and the feasibility of noninvasive ultrasound evaluation. Methods 12 male goats were randomly divided into A, B, C three groups. Group A: two in blank control group. The knee weight-bearing area was 6 mm in diameter, with a full-thickness cartilage defect. Group B: four goats, Only bionic cartilage scaffold was implanted in the defect of the Weight-bearing area of the femoral condyle. Group C: six goats used the Bionic cartilage scaffolds were combined with autologous bone marrow mesenchymal stem cells was implanted in the defect of the Weight-bearing area of the femoral condyle. BMSCs were isolated from bone marrow blood and cultured. When the concentration of cells reached 1×107 cells/ml, they were load in to the bionic cartilage scaffold. The constructed bionic tissue engineering cartilage was implanted into the femoral condyle cartilage defect. In each group, the goat was made in the left knee first, then in the right knee three months after the operation, and then in the right knee three months after the operation, the ultrasonic examination was first, and then the gross score, pathological staining, GAG content determination and mechanical detection. Results In group A, there was no cartilage repair at there and six months. The results of gross score, pathological score, GAG content and mechanical detection showed that group C was better than group B (P<0.05), Moreover, in group B and group C, the 6 month group was better than the 3 month group (P<0.05). In group C, the 6 month group was closer to the normal cartilage tissue. The results of repair gross morphology and indentation test were consistent with those of ultrasonic elastography. Conclusions Using tissue engineering to construct bionic cartilage to treat early cartilage injury has a reliable therapeutic effect, and with the participation of autologous bone marrow mesenchymal stem cells can achieve better repair effect. The recovery period of cartilage injury after bionic cartilage repair is more than 6 months. Ultrasound elastography can be used as a simple, rapid and effective method to evaluate the recovery effect of cartilage transplantation.

参考文献/References:

1 Newman, P A. Articular cartilage repair [J]. Am J Sports Med, 1998, 26(2): 309-324.2 Culvenor AG, ?iestad BE, Harvi FH, et al. Prevalence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic uninjured adults: a systematic review and meta-analysis [J]. Br J Sports Med, 2019, 53(20): 1268-1278.3 Nicola V, Shivappa N, Brendon S, et al. The relationship between the dietary inflammatory index and prevalence of radiographic symptomatic osteoarthritis: data from the Osteoarthritis Initiative [J]. Eur J Nutr, 2019, 58(1): 253-260.4 袁雪凌, 孟昊业, 刘若西, 等. 软骨干细胞修复软骨损伤及治疗骨关节炎的研究进展 [J]. 解放军医学院学报, 2017, 38(9): 890-892.5 马志洋. 组织工程软骨缝合技术及缝合材料的研究与进展 [J]. 中国组织工程研究与临床康复, 2011, 15(21): 3937-3940.6 兰伟伟, 陈维毅. 骨软骨组织工程研究进展 [J]. 生物医学工程学杂志, 2019, 36(3): 504-510.7 郝春香, 黄靖香, 眭翔, 等. 藻酸钙复合自体软骨细胞修复羊膝关节负重区软骨缺损的实验研究 [J]. 中国矫形外科杂志, 2019, 27(2): 165-170.8 Ali Mohammed Ahmed Khamis, Hatem GS, Eslam Karam Allah Ramadan, et al. Correction notice to: Arabic translation and validation of three knee scores, lysholm knee score (LKS), Oxford knee score (OKS), and international knee documentation committee subjective knee form (IKDC) [J]. SICOT-J, 2019, 5: 27.9 陈思然, 安颖颖, 展影, 等. 股骨滑车发育不良致髌股关节软骨损伤T2mapping序列定量评估 [J]. 中华医学杂志, 2019, 99(21): 1651-1655.10 彭礼庆, 罗旭江, 张彬, 等. 人关节软骨细胞外基质来源组织工程支架的制备和评估 [J]. 中国组织工程研究, 2019, 23(34): 5436-5441.11 Acharya C, Adesida A, Zajac P, et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation [J]. J Cell Physiol, 2012, 227(1): 88-97.12 Romain R, Imane D, Mohamed AA, et al. Superhydrophobicity of composite surfaces created from polymer blends [J]. J Colloid Interface Sci, 2020, 560: 596-605.13 Khaled W, Stefan R, Bruhns OT, et al. Ultrasonic strain imaging and reconstructive elastography for biological tissue [J]. Ultrasonics, 2006, 44: e199-e202.14 Jing L, Qian ZH, Wang KY, et al. Non-invasive Quantitative Assessment of Muscle Force Based on Ultrasonic Shear Wave Elastography [J]. Ultrasound Med Biol, 2019, 45(2): 440-451.15 Moran M, Kim HK, Salter RB. Biological resurfacing of full-thickness defects in patellar articular cartilage of the rabbit. Investigation of autogenous periosteal grafts subjected to continuous passive motion [J]. J Bone Joint Surg Br, 1992, 74-B(5): 659-667.16 Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage [J]. J Bone Joint Surg Am, 1994, 76(4): 579-592.17 Wang YS, Yuan XL, Yu K, et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration [J]. Biomaterials, 2018, 171: 118-132.18 Zhang Y, Liu S, Guo W, et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model [J]. Osteoarthritis Cartilage, 2018, 26(7): 954-965.19 鹿亮, 刘彬, 尚希福, 等. 脱细胞软骨细胞外基质取向支架复合软骨细胞构建组织工程软骨的实验研究 [J]. 中国修复重建外科杂志, 2018, 32(3): 291-297.20 Kon E, Filardo G, Martino AD, et al. ACI and MACI [J]. J Knee Surg, 2012, 25(1): 017-022.21 Zheng X, Yang F, Wang S, et al. Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold [J]. J Mater Sci Mater Med, 2011, 22(3): 693-704.22 Romain C, Demoor M, Miranda C, et al. Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering [J]. Stem Cell Rev Rep, 2020, 16(1): 126-143.

相似文献/References:

[1]刘晓娜,刘强,梁英,等.超声介入与冲击波治疗肱二头肌长头腱鞘炎的临床研究[J].中华老年骨科与康复电子杂志,2017,(06):346.[doi:10.3877/cma.j.issn.2096-0263.2017.06.006]
 Liu Xiaona,Liu Qiang,Liang Ying,et al.Clinical study of interventional ultrasound and shock wave treatment of tenosynovitis of long head of biceps brachii[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(02):346.[doi:10.3877/cma.j.issn.2096-0263.2017.06.006]

备注/Memo

备注/Memo:
国家自然科学基金 (81772319);国家重点研发计划(2018YFC1106900)
更新日期/Last Update: 2020-07-07