[1]吴石磊 刘勇 邵增务 田青. 骨组织细胞外泌体对骨代谢作用的研究现状[J].中华老年骨科与康复电子杂志,2018,(05):308-311.
 Wu Shilei,Liu Yong,Shao Zengwu,et al. Research status of bone tissue-derived exosomes on bone metabolism[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(05):308-311.
点击复制

 骨组织细胞外泌体对骨代谢作用的研究现状
()
分享到:

中华老年骨科与康复电子杂志[ISSN:1674-3911/CN:11-9292/R]

卷:
期数:
2018年05期
页码:
308-311
栏目:
综述
出版日期:
2018-10-05

文章信息/Info

Title:
 Research status of bone tissue-derived exosomes on bone metabolism
作者:
 吴石磊 刘勇 邵增务 田青
 430074 武汉,华中科技大学同济医学院附属协和医院骨科
Author(s):
 Wu Shilei Liu Yong Shao Zengwu Tian Qing.
 Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
 骨质疏松症 外泌体 骨生成 骨吸收
Keywords:
 Osteoporosis Exosomes Osteogenesis Bone resorption
文献标志码:
A
摘要:
骨质疏松症是老年人的常见病和多发病,骨组织来源细胞可分泌外泌体,包装和运载多种活性物质,如蛋白质、miRNAs、各种活性因子等,进行细胞间物质交换和信息交流,根据骨组织来源细胞外泌体和内容物的特点,利用其调节骨形成和骨吸收平衡的作用,甚至作为生物或基因治疗的载体,为老年骨质疏松症的防治提供全新的思路。
Abstract:
 Osteoporosis is a common and frequently occurring disease in the elderly. Studies found that the bone derived cells can also secrete the exsomes packaging and delivering a variety of active substances, such as protein, miRNAs, various active factors, carrying out the exchange of material and information between cells. According to the characteristics and contents of bone-derived exosomes, they can be used to regulate bone formation and bone resorption balance, even as carrier of biological or gene therapy, this kind of research may provide a new idea for the prevention and treatment of osteoporosis in the elderly.

参考文献/References:

 1 North Ameirican Menopause Society. Estrogen and progestogen use in postmenopausal women: 2010 position statement of The North American Menopause [J]. Menopause, 2010, 17(2): 242-255.<br />
2 Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 [J]. J Bone Miner Res, 2007, 22(3): 465-475.<br />
3 Gehlbach SH, Avrunin JS, Puleo E, et al. Fracture risk and antiresorptive medication use in older women in the USA [J]. Osteoporos Int, 2007, 18(6): 805-810.<br />
4 Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle [J]. Cancers (Basel), 2013, 5(4): 1522-1544.<br />
5 Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.<br />
6 Deng LL, Wang YP, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.<br />
7 Huynh N, Vonmoss L, Smith D, et al. Characterization of regulatory extracellular vesicles from osteoclasts [J]. J Dent Res, 2016, 95(6): 673-679.<br />
8 Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. J Cell Biol, 2013, 200(4): 373-383.<br />
9 Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more [J]. Trends Cell Biol, 2009, 19(2): 43-51.<br />
10 Runz S, Keller S, Rupp C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM [J]. Gynecol Oncol, 2007, 107(3): 563-571.<br />
11 Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63 [J]. Exp Cell Res, 2009, 315(9): 1584-1592.<br />
12 Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity [J]. Cell Discov, 2016, 2(2): 16015.<br />
13 Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation [J]. Nat Commun, 2016, 7(7): 10872.<br />
14 Deng L, Wang Y, Peng Y, et al. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts [J]. Bone, 2015, 79: 37-42.<br />
15 Antonyak MA, Li B, Boroughs LK, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 4852-4857.<br />
16 Xie Y, Chen Y, Zhang L, et al. The roles of bone-derived exosomes and exosomal microRNAsin regulating bone remodeling [J]. J Cell Mol Med, 2017, 21(5): 1033-1041.<br />
17 Qin YH, Wang L, Gao ZL, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo [J]. Sci Rep, 2016, 6(6): 21961.<br />
18 Zhao LM, Jiang S, Hantash BM. Transforming growth factor beta 1 induces osteogenic differentiation of murine bone marrow stromal cells [J]. Tissue Eng Part A, 2010, 16(2): 725-733.<br />
19 Luther G, Wagner ER, Zhu GH, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential [J]. Curr Gene Ther, 2011, 11(3): 229-240.<br />
20 Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells [J]. Stem Cells Int, 2016: 3808674.<br />
21 Cui YZ, Luan J, Li HY, et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression [J]. FEBS Lett, 2016, 590(1): 185-192.<br />
22 Ekstrom K, Omar O, Graneli C, et al. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells [J]. PLoS One, 2013, 8(9): 75227.<br />
23 Omar MO, Graneli C, Ekstrom K, et al. The stimulation of an osteogenic response by classical monocyte activation [J]. Biomaterials, 2011, 32(32): 8190-8204.<br />
24 Egea V, Zahler S, Rieth N, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling [J]. Proc Natl Acad Sci U S A, 2012, 109(6): E309-E316.<br />
25 Wei J, Li H, Wang S, et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2 [J]. Stem Cells Dev, 2014, 23(13): 1452-1463.<br />
26 Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2 [J]. Proc Natl Acad Sci USA, 2011, 108(24): 9863-9868.<br />
27 Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program [J]. Proc Natl Acad Sci U S A, 2008, 105(37): 13906-13911.<br />
28 Xu JF, Yang GH, Pan XH, et al. Altered MicroRNA expression profile in exosomes during osteogenic differentiation of human bone Marrow-Derived mesenchymal stem cells [J]. PLoS One, 2014, 9(12): e114627.<br />
29 Huang J, Zhao L, Xing LP, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation [J]. Stem Cells, 2010, 28(2): 357-364.<br />
30 Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells [J]. FEBS Lett, 2014, 588(17): 2957-2963.<br />
31 Qin Y, Sun R, Wu C, et al. Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis [J]. Int J Mol Sci, 2016, 17(5): 712.<br />
32 Kim YJ, Bae SW, Yu SS, et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue [J]. J Bone Miner Res, 2009, 24(5): 816-825.<br />
33 Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells [J]. J Biol Chem, 2012, 287(50): 42084-42092.<br />
34 Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK [J]. J Bone Miner Res, 2014, 29(2): 338-347.<br />
35 James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica (Cairo), 2013: 684736.<br />
36 Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B [J]. J Bone Miner Res, 2013, 28(5): 1180-1190.<br />
37 Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation [J]. Nat Med, 2013, 19(1): 93-100.<br />
38 Zhao C, Sun W, Zhang P, et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway [J]. RNA Biol, 2015, 12(3): 343-353.<br />
39 渠海波, 张朝, 吴刚. 骨质疏松的研究进展 [J]. 包头医学院学报, 2013, 29(3): 119-121.<br />

相似文献/References:

[1]马晓龙,刘强,吴斗,等.骨质疏松显微骨折早期发生发展过程的实验研究[J].中华老年骨科与康复电子杂志,2016,(03):129.[doi:10.3877/cma.j.issn.2096-0263.2016.03.001]
 Ma Xiaolong,Liu Qiang,Wu Dou,et al.Experimental study of osteoporotic microsurgery fractures in the early development process[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2016,(05):129.[doi:10.3877/cma.j.issn.2096-0263.2016.03.001]
[2]崔红旺,蒋电明.骨细胞程序性死亡在骨质疏松中作用的研究进展[J].中华老年骨科与康复电子杂志,2016,(03):181.[doi:10.3877/cma.j.issn.2096-0263.2016.03.011]
 Cui Hongwang,Jiang Dianming.Effect of the programmed cell death of osteocyte on osteoporosis[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2016,(05):181.[doi:10.3877/cma.j.issn.2096-0263.2016.03.011]
[3]李子怡,李玉坤.OPG/RANK/RANKL信号通路在骨质疏松症中的研究进展和应用[J].中华老年骨科与康复电子杂志,2017,(02):124.[doi:10.3877/cma.j.issn.2096-0263.2017.02.012]
 Li Ziyi,Li Yukun.Researching progress and application of OPG-RANK-RANKL signaling pathway in osteoporosis[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(05):124.[doi:10.3877/cma.j.issn.2096-0263.2017.02.012]
[4]雷涛,申勇.老年骨质疏松性椎体骨折若干问题的探讨[J].中华老年骨科与康复电子杂志,2017,(04):248.[doi:10.3877/cma.j.issn.2096-0263.2017.04.010]
 Lei Tao,Shen Yong..A brief discussion of osteoporotic vertebral fractures in elderly patients[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(05):248.[doi:10.3877/cma.j.issn.2096-0263.2017.04.010]
[5]马树伟.球囊扩张椎体成形术治疗急性与亚急性期骨质疏松椎体压缩骨折的疗效对比[J].中华老年骨科与康复电子杂志,2017,(06):341.[doi:10.3877/cma.j.issn.2096-0263.2017.06.005]
 Ma Shuwei.Clinical efficacy of percutaneous kyphoplasty in the treatment of acute and subacute phase of osteoporotic vertebral compression fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(05):341.[doi:10.3877/cma.j.issn.2096-0263.2017.06.005]
[6]刘伟,傅光涛,胡旭民,等.唑来膦酸治疗绝经后骨质疏松发生脆性骨折的临床研究[J].中华老年骨科与康复电子杂志,2017,(06):351.[doi:10.3877/cma.j.issn.2096-0263.2017.06.007]
 Liu Wei,Fu Guangtao,Hu Xumin,et al.Analysis in postmenopausal osteoporosis patients with fragility fracture during zoledronic acid treatment[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2017,(05):351.[doi:10.3877/cma.j.issn.2096-0263.2017.06.007]
[7]邢浩,刘强,吴斗,等.双膦酸盐治疗股骨非典型性骨折的研究进展[J].中华老年骨科与康复电子杂志,2018,(02):118.[doi:10.3877/cma.j.issn.2096-0263.2018.02.010]
 Bisphosphonates and atypical femur fractures femur[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(05):118.[doi:10.3877/cma.j.issn.2096-0263.2018.02.010]
[8]梁伟,吴斗,赵恩哲,等.皮质厚度在骨质疏松性髋部骨折中的应用研究[J].中华老年骨科与康复电子杂志,2018,(03):184.[doi:10.3877/cma.j.issn.2096-0263.2018.03.012]
 Liang Wei,Wu Dou,Zhao Enzhe,et al.Application research of Cortical thickness in osteoporotic hip fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(05):184.[doi:10.3877/cma.j.issn.2096-0263.2018.03.012]
[9]谢亚明,谢国盛,林蒙,等.网袋成形术与椎体后凸成形术治疗骨质疏松性椎体压缩骨折的早期疗效比较[J].中华老年骨科与康复电子杂志,2018,(04):202.[doi:10.3877/cma.j.issn.2096-0263.2018.04.003]
 Xie Yaming,Xie Guosheng,Lin Meng,et al.Early clinical outcome of vesselplasty and kyphoplasty in treatment of osteoporotic vertebral compression fractures[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(05):202.[doi:10.3877/cma.j.issn.2096-0263.2018.04.003]
[10]鲍飞龙 刘涛 亢世杰 黄东生 江涛 胡义明. 双反牵引装置治疗Schatzker分型Ⅴ、Ⅵ型胫骨平台骨折的优势[J].中华老年骨科与康复电子杂志,2018,(05):266.
 Bao Feilong,Liu Tao,Kang Shijie,et al.The advantage of homeopathic double reverse traction device treating tibial plateau fractures of typing Schatzker Ⅴ and Ⅵ[J].Chin J Geriatr Orthop Rehabil(Electronic Edition),2018,(05):266.

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金青年科学基金(30800654)
更新日期/Last Update: 2019-01-28